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Los documentos de Toomates son materiales digitales y gratuitos. Son digitales porque están pensados para ser consultados 

mediante un ordenador, tablet o móvil. Son gratuitos porque se ofrecen a la comunidad educativa sin coste alguno. Los libros de 
texto pueden ser digitales o en papel, gratuitos o en venta, y ninguna de estas opciones es necesariamente mejor o peor que las otras. 

Es más: Suele suceder que los mejores docentes son los que piden a sus alumnos la compra de un libro de texto en papel, esto es un 

hecho. Lo que no es aceptable, por inmoral y mezquino, es el modelo de las llamadas "licencias digitales" con las que las editoriales 
pretenden cobrar a los estudiantes, una y otra vez, por acceder a los mismos contenidos (unos contenidos que, además, son de una 

bajísima calidad). Este modelo de negocio es miserable, pues impide el compartir un mismo libro, incluso entre dos hermanos, 

pretende convertir a los estudiantes en un mercado cautivo, exige a los estudiantes y a las escuelas costosísimas líneas de Internet, 
pretende pervertir el conocimiento, que es algo social, público, convirtiéndolo en un producto de propiedad privada, accesible solo a 

aquellos que se lo puedan permitir, y solo de una manera encapsulada, fragmentada, impidiendo el derecho del alumno de poseer 
todo el libro, de acceder a todo el libro, de moverse libremente por todo el libro. 

Nadie puede pretender ser neutral ante esto: Mirar para otro lado y aceptar el modelo de licencias digitales es admitir un mundo más 

injusto, es participar en la denegación del acceso al conocimiento a aquellos que no disponen de medios económicos, y esto en un 
mundo en el que las modernas tecnologías actuales permiten, por primera vez en la historia de la Humanidad, poder compartir el 

conocimiento sin coste alguno, con algo tan simple como es un archivo "pdf". El conocimiento no es una mercancía. 

El proyecto Toomates tiene como objetivo la promoción y difusión entre el profesorado y el colectivo de estudiantes de unos 
materiales didácticos libres, gratuitos y de calidad, que fuerce a las editoriales a competir ofreciendo alternativas de pago atractivas 

aumentando la calidad de unos libros de texto que actualmente son muy mediocres, y no mediante retorcidas técnicas comerciales. 

Este documento se comparte bajo una licencia “Creative Commons 4.0 (Atribution Non Commercial)”: Se permite, se promueve 

y se fomenta cualquier uso, reproducción y edición de todos estos materiales siempre que sea sin ánimo de lucro y se cite su 

procedencia. Todos los documentos se ofrecen en dos versiones: En formato “pdf” para una cómoda lectura y en el formato “doc” 

de MSWord para permitir y facilitar su edición y generar versiones parcial o totalmente modificadas. 
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Presentación. 
 

La prueba United States of America Mathematical Olympiad (USAMO) es la Fase 

Nacional de las Olimpiadas Matemáticas correspondiente a los Estados Unidos. 

 

La prueba se desarrolla en dos jornadas, en cada una se proponen tres problemas a 

resolver en cuatro horas y media. Las respuestas deben ser tipo “ensayo”, es decir, se 

deben argumentar y se puntúa la claridad expositiva y la calidad matemática de los 

razonamientos. Cada problema se puntúa entre 0 y 7, haciendo un total de 42 puntos. 

  

Fue creada en el año 1972 por Nura D. Turner y Samuel L.Greitzer como ronda final de 

las competiciones AMC. Los doce mejores clasificados en la USAMO son invitados a 

participar en el Mathematical Olympiad Summer Program (MOP) de donde se 

seleccionarán los seis componentes del equipo olímpico que representará a los Estados 

Unidos en las Olimpiadas Matemáticas Internacionales (IMO). 

 

La prueba America Junior Mathematical Olympiad (USAJMO) fue introducida en el 

2010 para reconocer a los mejores clasificados de la prueba AMC 10. 

 

En el año 1983 se introdujo la prueba AIME (American Invitational Mathematics 

Examination) como puente entre las AMC y las USAMO. 

 

Se pueden presentar todos los ciudadanos de los EEUU  o Canadá, o con tarjeta de 

residencia de dichos países, seleccionados entre los mejores clasificados en las fases 

AMC y AIME, mediante el siguiente índice: 

 

- Índice AMC 12:  

Puntuación de la prueba AMC 12 + 10*(Puntuación de la prueba AIME). 

 Los mejores 260-270 clasificados se clasifican para la prueba USAMO. 

 

- Índice AMC 10: 

Puntuación de la prueba AMC 10 + 10*(Puntuación de la prueba AIME). 

 Los mejores 230-240 clasificados se clasifican para la prueba USAMO. 

 

Si un estudiante se presenta a las dos pruebas (AMC 10 y AMC 12) y se clasifica por 

ambas, deberá optar obligatoriamente a la prueba USAMO. 

 



Índice. 
 

 
Enunciados Soluciones Notas Chen (*) 

16 - XVI - (1987) 7 
  17 - XVII - (1988) 9 
  18 - XVIII - (1989) 11 
  19 - XIX - (1990) 13 
  20 - XX - (1991) 15 
  21 - XXI - (1992) 17 
  22 - XXII - (1993) 18 
  23 - XXIII - (1994) 19 
  24 - XXIV - (1995) 20 
  25 - XXV - (1996) 21 
  26 - XXVI - (1997) 23 
  27 - XXVII - (1998) 25 
  28 - XXVIII - (1999) 27 
  29 - XXIX - (2000) 29 
 

31 

30 - XXX - (2001) 41 43 53 

31 - XXXI - (2002) 63 65 74 

32 - XXXII - (2003) 82 84 101 

33 - XXXIII - (2004) 110 112 119 

34 - XXXIV - (2005) 130 132 141 

35 - XXXV - (2006) 150 152 162 

36 - XXXVI - (2007) 171 173 182 

37 - XXXVII - (2008) 191 193 204 

38 - XXXVIII - (2009) 215 217 229 

39 - XXXIX - (2010) 238 240 247 

40 - XL - (2011) 256 258 265 

41 - XLI - (2012) 274 276 283 

42 - XLII - (2013) 291 293 305 

43 - XLIII - (2014) 317 319 327 

44 - XLIV - (2015) 338 340 350 

45 - XLV - (2016) 361 
 

363 

46 - XLVI - (2017) 375 377 383 

47 - XLVII - (2018) 396 398 408 

48 - XLVIII - (2019) 421 423 430 

49 - XLIX - (2020) 442 
 

444 

50 - L - (2021) 458 
 

460 

51 - LI - (2022) 475 
 

477 

52 - LII - (2023) 488 
 

490 

 

 

 (*) https://web.evanchen.cc/ 

https://web.evanchen.cc/


Temas tratados en las últimas pruebas: 
 
2017 
1. Teoría de números 

2. Combinatoria 

3. Geometría 
4. Combinatoria 

5. Combinatoria 

6. Álgebra 
 

2016 

1. Combinatoria 
2. Teoría de números 

3. Geometría 
4. Álgebra 

5. Geometría 

6. Combinatoria 
 

2015 

1. Álgebra 
2. Geometría 

3. Combinatoria 

4. Combinatoria 
5. Teoría de números 

6. Álgebra 

 
2014 

1. Álgebra 

2. Álgebra 
3. Álgebra 

4. Combinatoria/Teoría de juegos 

5. Geometría 
6. Teoría de números 

 

2013 
1. Geometría 

2. Combinatoria 

3. Combinatoria 
4. Álgebra 

5. Teoría de números 

6. Geometría 

 

2012 

1. Combinatoria/Álgebra 
2. Combinatoria 

3. Teoría de números 

4. Teoría de números/Álgebra 
5. Geometría 

6. Álgebra/Combinatoria 

 
2011 

1. Álgebra/Desigualdades 

2. Combinatoria 
3. Geometría 

4. Teoría de números 

5. Geometría 
6. Combinatoria 

 

2010 
1. Geometría 

2. Combinatoria 

3. Álgebra 

4. Geometría/Teoría de números 

5. Álgebra/Teoría de números 
6. Combinatoria 

 

2009 
1. Geometría 

2. Combinatoria 

3. Combinatoria/Teoría de Grafos 
4. Álgebra 

5. Geometría 

6. Teoría de números 
 

2008 

1. Teoría de números 
2. Geometría 

3. Combinatoria 
4. Combinatoria 

5. Teoría de números/Combinatoria 

6. Teoría de Grafos/Álgebra Lineal 
 

2007 

1. Teoría de números/Álgebra 
2. Geometría 

3. Combinatoria 

4. Teoría de Grafos 
5. Teoría de números 

6. Geometría 

 
2006 

1. Teoría de números 

2. Álgebra/Combinatoria 
3. Teoría de números/Álgebra 

4. Álgebra 

5. Álgebra/Combinatoria 
6. Geometría 

 

2005 
1. Teoría de números/Teoría de Grafos 

2. Teoría de números 

3. Geometría 
4. Geometría/Álgebra 

5. Combinatoria 

6. Álgebra 

 

2004 

1. Geometría/Desigualdades 
2. Álgebra 

3. Combinatoria/Geometría 

4. Combinatoria 
5. Desigualdades 

6. Geometría 

 
2003 

1. Teoría de números 

2. Geometría/Álgebra 
3. Álgebra 

4. Geometría 

5. Desigualdades 
6. Combinatoria 



Fuentes. 
 

https://www.maa.org/math-competitions/usamo-archive 

 

https://web.evanchen.cc/problems.html 

 

https://www.russianschool.com/blog/competitions/usamo-problems-and-solutions 

 

https://artofproblemsolving.com/wiki/index.php/USAMO_Problems_and_Solutions 

 

 

 

Todo este material ha sido agrupado en un único archivo "pdf" mediante la aplicación 

online https://www.ilovepdf.com/ 
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Problems from the 1987 USAMO.

1 Problem 1
2 Problem 2
3 Problem 3
4 Problem 4
5 Problem 5
6 See Also

Find all solutions to , where m and n are non-zero integers.

Solution

The feet of the angle bisectors of  form a right-angled triangle. If the right-angle is at , where  is the bisector of ,
find all possible values for .

Solution

 is the smallest set of polynomials  such that:

1.  belongs to .
2. If  belongs to , then  and  both belong to .

Show that if  and  are distinct elements of , then  for any .

Solution

M is the midpoint of XY. The points P and Q lie on a line through Y on opposite sides of Y, such that  and 

. For what value of  is  a minimum?

Solution

 is a sequence of 0's and 1's. T is the number of triples  with  which are not equal to (0,
1, 0) or (1, 0, 1). For ,  is the number of  with  plus the number of  with . Show

that . If n is odd, what is the smallest value of T?

Solution

1987 USAMO Problems

Contents

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

See Also

https://artofproblemsolving.com/wiki/index.php/USAMO
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Problems from the 1988 USAMO.

1 Problem 1
2 Problem 2
3 Problem 3
4 Problem 4
5 Problem 5
6 See Also

The repeating decimal , where  and  are relatively prime integers, and there is at least one decimal

before the repeating part. Show that  is divisible by 2 or 5 (or both). (For example, ,

and 88 is divisible by 2.)

Solution

The cubic polynomial  has real coefficients and three real roots . Show that 

 and that .

Solution

Let  be the set  and let  be the set of all 9-element subsets of . Show that for any map  we
can find a 10-element subset  of , such that  for any  in .

Solution

 is a triangle with incenter . Show that the circumcenters of , , and  lie on a circle whose
center is the circumcenter of .

Solution

Let  be the polynomial , where  are integers. When
expanded in powers of , the coefficient of  is  and the coefficients of , , ...,  are all zero. Find .

Solution

1988 USAMO Problems

Contents

Problem 1

Problem 2

Problem 3

Problem 4
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Problems from the 1989 USAMO.

1 Problem 1
2 Problem 2
3 Problem 3
4 Problem 4
5 Problem 5
6 See Also

For each positive integer , let

.

Find, with proof, integers  such that  and .

Solution

The 20 members of a local tennis club have scheduled exactly 14 two-person games among themselves, with each member playing in
at least one game. Prove that within this schedule there must be a set of 6 games with 12 distinct players.

Solution

Let  be a polynomial in the complex variable , with real coefficients .
Suppose that . Prove that there exist real numbers  and  such that  and 

.

Solution

Let  be an acute-angled triangle whose side lengths satisfy the inequalities . If point  is the center of
the inscribed circle of triangle  and point  is the center of the circumscribed circle, prove that line  intersects segments 

 and .

Solution

Let  and  be real numbers such that

Determine, with proof, which of the two numbers,  or , is larger.
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A certain state issues license plates consisting of six digits (from 0 through 9). The state requires that any two plates differ in at least

two places. (Thus the plates  and  cannot both be used.) Determine, with proof, the maximum number of
distinct license plates that the state can use.

Solution

A sequence of functions  is defined recursively as follows:

(Recall that  is understood to represent the positive square root.) For each positive integer , find all real solutions of the

equation .

Solution

Suppose that necklace  has 14 beads and necklace  has 19. Prove that for any odd integer , there is a way to number
each of the 33 beads with an integer from the sequence

so that each integer is used once, and adjacent beads correspond to relatively prime integers. (Here a "necklace" is viewed as a circle in
which each bead is adjacent to two other beads.)

Solution

Find, with proof, the number of positive integers whose base-  representation consists of distinct digits with the property that, except
for the leftmost digit, every digit differs by  from some digit further to the left. (Your answer should be an explicit function of  in
simplest form.)

Solution
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An acute-angled triangle  is given in the plane. The circle with diameter  intersects altitude  and its extension at
points  and , and the circle with diameter  intersects altitude  and its extensions at  and . Prove that the
points  lie on a common circle.

Solution
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Problems from the 1991 USAMO. There were five questions administered in one three-and-a-half-hour session.

1 Problem 1
2 Problem 2
3 Problem 3
4 Problem 4
5 Problem 5
6 See Also

In triangle  angle  is twice angle  angle  is obtuse, and the three side lengths  are integers. Determine, with
proof, the minimum possible perimeter.

Solution

For any nonempty set  of numbers, let  and  denote the sum and product, respectively, of the elements of . Prove
that

where " " denotes a sum involving all nonempty subsets  of .

Solution

Show that, for any fixed integer  the sequence

is eventually constant.

[The tower of exponents is defined by . Also  means the remainder which results from
dividing  by .]

Solution

Let  where  and  are positive integers. Prove that .

[You may wish to analyze the ratio  for real  and integer .]

Solution

Let  be an arbitrary point on side  of a given triangle  and let  be the interior point where  intersects the
external common tangent to the incircles of triangles  and . As  assumes all positions between  and , prove
that the point  traces the arc of a circle.
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21st USA Mathematical Olympiad

April 30, 1992
Time Limit: 31

2
hours

1. Find, as a function of n, the sum of the digits of

9× 99× 9999× · · · ×
(
102n − 1

)
,

where each factor has twice as many digits as the previous one.

2. Prove

1

cos 0◦ cos 1◦
+

1

cos 1◦ cos 2◦
+ · · ·+ 1

cos 88◦ cos 89◦
=

cos 1◦

sin2 1◦
.

3. For a nonempty set S of integers, let σ(S) be the sum of the elements
of S. Suppose that A = {a1, a2, . . . , a11} is a set of positive integers
with a1 < a2 < · · · < a11 and that, for each positive integer n ≤ 1500,
there is a subset S of A for which σ(S) = n. What is the smallest
possible value of a10?

4. Chords AA′, BB′, CC ′ of a sphere meet at an interior point P but
are not contained in a plane. The sphere through A,B,C, P is tangent
to the sphere through A′, B′, C ′, P . Prove that AA′ = BB′ = CC ′.

5. Let P (z) be a polynomial with complex coefficients which is of degree
1992 and has distinct zeros. Prove that there exist complex numbers
a1, a2, . . . , a1992 such that P (z) divides the polynomial(

· · ·
(
(z − a1)2 − a2

)2
· · · − a1991

)2

− a1992.

1



22nd United States of America Mathematical Olympiad

April 29, 1993

Time Limit: 31
2

hours

1. For each integer n ≥ 2, determine, with proof, which of the two positive real

numbers a and b satisfying

an = a+ 1, b2n = b+ 3a

is larger.

2. Let ABCD be a convex quadrilateral such that diagonals AC and BD inter-

sect at right angles, and let E be their intersection. Prove that the reflections

of E across AB, BC, CD, DA are concyclic.

3. Consider functions f : [0, 1]→ R which satisfy

(i) f(x) ≥ 0 for all x in [0, 1],

(ii) f(1) = 1,

(iii) f(x) + f(y) ≤ f(x+ y) whenever x, y, and x+ y are all in [0, 1].

Find, with proof, the smallest constant c such that

f(x) ≤ cx

for every function f satisfying (i)-(iii) and every x in [0, 1].

4. Let a, b be odd positive integers. Define the sequence (fn) by putting f1 = a,

f2 = b, and by letting fn for n ≥ 3 be the greatest odd divisor of fn−1 + fn−2.

Show that fn is constant for n sufficiently large and determine the eventual

value as a function of a and b.

5. Let a0, a1, a2, . . . be a sequence of positive real numbers satisfying ai−1ai+1 ≤ a2
i

for i = 1, 2, 3, . . . . (Such a sequence is said to be log concave.) Show that for

each n > 1,

a0 + · · ·+ an
n+ 1

· a1 + · · ·+ an−1

n− 1
≥ a0 + · · ·+ an−1

n
· a1 + · · ·+ an

n
.

Copyright c© Committee on the American Mathematics Competitions,
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23rd United States of America Mathematical Olympiad

April 28, 1994

Time Limit: 31
2

hours

1. Let k1 < k2 < k3 < · · · be positive integers, no two consecutive, and let sm =

k1 + k2 + · · ·+ km for m = 1, 2, 3, . . . . Prove that, for each positive integer n,

the interval [sn, sn+1) contains at least one perfect square.

2. The sides of a 99-gon are initially colored so that consecutive sides are red, blue,

red, blue, . . . , red, blue, yellow. We make a sequence of modifications in the

coloring, changing the color of one side at a time to one of the three given colors

(red, blue, yellow), under the constraint that no two adjacent sides may be the

same color. By making a sequence of such modifications, is it possible to arrive

at the coloring in which consecutive sides are red, blue, red, blue, red, blue, . . . ,

red, yellow, blue?

3. A convex hexagon ABCDEF is inscribed in a circle such that AB = CD = EF

and diagonals AD, BE, and CF are concurrent. Let P be the intersection of

AD and CE. Prove that CP/PE = (AC/CE)2.

4. Let a1, a2, a3, . . . be a sequence of positive real numbers satisfying
∑n
j=1 aj ≥

√
n

for all n ≥ 1. Prove that, for all n ≥ 1,

n∑
j=1

a2
j >

1

4

(
1 +

1

2
+ · · ·+ 1

n

)
.

5. Let |U |, σ(U) and π(U) denote the number of elements, the sum, and the

product, respectively, of a finite set U of positive integers. (If U is the empty

set, |U | = 0, σ(U) = 0, π(U) = 1.) Let S be a finite set of positive integers.

As usual, let
(
n
k

)
denote n!

k! (n−k)!
. Prove that

∑
U⊆S

(−1)|U |
(
m− σ(U)

|S|

)
= π(S)

for all integers m ≥ σ(S).

Copyright c© Committee on the American Mathematics Competitions,
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24th United States of America Mathematical Olympiad

April 27, 1995

Time Limit: 31
2

hours

1. Let p be an odd prime. The sequence (an)n≥0 is defined as follows: a0 = 0,

a1 = 1, . . . , ap−2 = p− 2 and, for all n ≥ p− 1, an is the least positive integer

that does not form an arithmetic sequence of length p with any of the preceding

terms. Prove that, for all n, an is the number obtained by writing n in base

p− 1 and reading the result in base p.

2. A calculator is broken so that the only keys that still work are the sin, cos,

tan, sin−1, cos−1, and tan−1 buttons. The display initially shows 0. Given any

positive rational number q, show that pressing some finite sequence of buttons

will yield q. Assume that the calculator does real number calculations with

infinite precision. All functions are in terms of radians.

3. Given a nonisosceles, nonright triangle ABC, let O denote the center of its cir-

cumscribed circle, and let A1, B1, and C1 be the midpoints of sides BC, CA,

and AB, respectively. Point A2 is located on the ray OA1 so that ∆OAA1

is similar to ∆OA2A. Points B2 and C2 on rays OB1 and OC1, respectively,

are defined similarly. Prove that lines AA2, BB2, and CC2 are concurrent, i.e.

these three lines intersect at a point.

4. Suppose q0, q1, q2, . . . is an infinite sequence of integers satisfying the following

two conditions:

(i) m− n divides qm − qn for m > n ≥ 0,

(ii) there is a polynomial P such that |qn| < P (n) for all n.

Prove that there is a polynomial Q such that qn = Q(n) for all n.

5. Suppose that in a certain society, each pair of persons can be classified as either

amicable or hostile. We shall say that each member of an amicable pair is a

friend of the other, and each member of a hostile pair is a foe of the other.

Suppose that the society has n persons and q amicable pairs, and that for

every set of three persons, at least one pair is hostile. Prove that there is

at least one member of the society whose foes include q(1 − 4q/n2) or fewer

amicable pairs.

Copyright c© Committee on the American Mathematics Competitions,
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25th United States of America Mathematical Olympiad

Part I 9 a.m. - 12 noon

May 2, 1996

1. Prove that the average of the numbers n sinn◦ (n = 2, 4, 6, . . . , 180) is cot 1◦.

2. For any nonempty set S of real numbers, let σ(S) denote the sum of the ele-

ments of S. Given a set A of n positive integers, consider the collection of all

distinct sums σ(S) as S ranges over the nonempty subsets of A. Prove that this

collection of sums can be partitioned into n classes so that in each class, the

ratio of the largest sum to the smallest sum does not exceed 2.

3. Let ABC be a triangle. Prove that there is a line ` (in the plane of triangle

ABC) such that the intersection of the interior of triangle ABC and the interior

of its reflection A′B′C ′ in ` has area more than 2/3 the area of triangle ABC.

Copyright c© Committee on the American Mathematics Competitions,
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25th United States of America Mathematical Olympiad

Part II 1 p.m. - 4 p.m.

May 2, 1996

4. An n-term sequence (x1, x2, . . . , xn) in which each term is either 0 or 1 is called a

binary sequence of length n. Let an be the number of binary sequences of length

n containing no three consecutive terms equal to 0, 1, 0 in that order. Let bn

be the number of binary sequences of length n that contain no four consecutive

terms equal to 0, 0, 1, 1 or 1, 1, 0, 0 in that order. Prove that bn+1 = 2an for

all positive integers n.

5. Triangle ABC has the following property: there is an interior point P such that

∠PAB = 10◦, ∠PBA = 20◦, ∠PCA = 30◦, and ∠PAC = 40◦. Prove that

triangle ABC is isosceles.

6. Determine (with proof) whether there is a subset X of the integers with the

following property: for any integer n there is exactly one solution of a+ 2b = n

with a, b ∈ X.

Copyright c© Committee on the American Mathematics Competitions,
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26th United States of America Mathematical Olympiad

Part I 9 a.m. - 12 noon

May 1, 1997

1. Let p1, p2, p3, . . . be the prime numbers listed in increasing order, and let x0 be

a real number between 0 and 1. For positive integer k, define

xk =


0 if xk−1 = 0,{

pk
xk−1

}
if xk−1 6= 0,

where {x} denotes the fractional part of x. (The fractional part of x is given

by x − bxc where bxc is the greatest integer less than or equal to x.) Find,

with proof, all x0 satisfying 0 < x0 < 1 for which the sequence x0, x1, x2, . . .

eventually becomes 0.

2. Let ABC be a triangle, and draw isosceles triangles BCD,CAE,ABF exter-

nally to ABC, with BC,CA,AB as their respective bases. Prove that the

lines through A,B,C perpendicular to the lines
←→
EF,

←→
FD,

←→
DE, respectively, are

concurrent.

3. Prove that for any integer n, there exists a unique polynomial Q with coefficients

in {0, 1, . . . , 9} such that Q(−2) = Q(−5) = n.

Copyright c© Committee on the American Mathematics Competitions,
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26th United States of America Mathematical Olympiad

Part II 1 p.m. - 4 p.m.

May 1, 1997

4. To clip a convex n-gon means to choose a pair of consecutive sides AB,BC

and to replace them by the three segments AM,MN , and NC, where M is the

midpoint of AB and N is the midpoint of BC. In other words, one cuts off the

triangle MBN to obtain a convex (n + 1)-gon. A regular hexagon P6 of area

1 is clipped to obtain a heptagon P7. Then P7 is clipped (in one of the seven

possible ways) to obtain an octagon P8, and so on. Prove that no matter how

the clippings are done, the area of Pn is greater than 1/3, for all n ≥ 6.

5. Prove that, for all positive real numbers a, b, c,

(a3 + b3 + abc)−1 + (b3 + c3 + abc)−1 + (c3 + a3 + abc)−1 ≤ (abc)−1.

6. Suppose the sequence of nonnegative integers a1, a2, . . . , a1997 satisfies

ai + aj ≤ ai+j ≤ ai + aj + 1

for all i, j ≥ 1 with i + j ≤ 1997. Show that there exists a real number x such

that an = bnxc (the greatest integer ≤ nx) for all 1 ≤ n ≤ 1997.

Copyright c© Committee on the American Mathematics Competitions,
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27th United States of America Mathematical Olympiad

Part I 9 a.m. -12 noon

April 28, 1998

1. Suppose that the set {1, 2, · · · , 1998} has been partitioned into disjoint pairs {ai, bi}
(1 ≤ i ≤ 999) so that for all i, |ai − bi| equals 1 or 6. Prove that the sum

|a1 − b1|+ |a2 − b2|+ · · ·+ |a999 − b999|
ends in the digit 9.

2. Let C1 and C2 be concentric circles, with C2 in the interior of C1. From a point A on C1

one draws the tangent AB to C2 (B ∈ C2). Let C be the second point of intersection
of AB and C1, and let D be the midpoint of AB. A line passing through A intersects
C2 at E and F in such a way that the perpendicular bisectors of DE and CF intersect
at a point M on AB. Find, with proof, the ratio AM/MC.

3. Let a0, a1, · · · , an be numbers from the interval (0, π/2) such that

tan(a0 −
π

4
) + tan(a1 −

π

4
) + · · ·+ tan(an −

π

4
) ≥ n− 1.

Prove that

tan a0 tan a1 · · · tan an ≥ nn+1.

Copyright c© Committee on the American Mathematics Competitions,
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27th United States of America Mathematical Olympiad

Part II 1 p.m. - 4 p.m.

April 28, 1998

4. A computer screen shows a 98 × 98 chessboard, colored in the usual way. One can
select with a mouse any rectangle with sides on the lines of the chessboard and click
the mouse button: as a result, the colors in the selected rectangle switch (black becomes
white, white becomes black). Find, with proof, the minimum number of mouse clicks
needed to make the chessboard all one color.

5. Prove that for each n ≥ 2, there is a set S of n integers such that (a − b)2 divides ab
for every distinct a, b ∈ S.

6. Let n ≥ 5 be an integer. Find the largest integer k (as a function of n) such that
there exists a convex n-gon A1A2 . . . An for which exactly k of the quadrilaterals
AiAi+1Ai+2Ai+3 have an inscribed circle. (Here An+j = Aj.)

Copyright c© Committee on the American Mathematics Competitions,
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28th United States of America Mathematical Olympiad

Part I 9 a.m. – 12 noon

April 27, 1999

1. Some checkers placed on an n× n checkerboard satisfy the following conditions:

(a) every square that does not contain a checker shares a side with one that does;

(b) given any pair of squares that contain checkers, there is a sequence of squares
containing checkers, starting and ending with the given squares, such that every
two consecutive squares of the sequence share a side.

Prove that at least (n2 − 2)/3 checkers have been placed on the board.

2. Let ABCD be a cyclic quadrilateral. Prove that

|AB − CD|+ |AD −BC| ≥ 2|AC −BD|.

3. Let p > 2 be a prime and let a, b, c, d be integers not divisible by p, such that

{ra/p}+ {rb/p}+ {rc/p}+ {rd/p} = 2

for any integer r not divisible by p. Prove that at least two of the numbers a+ b, a+ c,
a+ d, b+ c, b+ d, c+ d are divisible by p. (Note: {x} = x−bxc denotes the fractional
part of x.)

Copyright c© Committee on the American Mathematics Competitions,
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28th United States of America Mathematical Olympiad

Part II 1 p.m. – 4 p.m.

April 27, 1999

4. Let a1, a2, . . . , an (n > 3) be real numbers such that

a1 + a2 + · · ·+ an ≥ n and a2
1 + a2

2 + · · ·+ a2
n ≥ n2.

Prove that max(a1, a2, . . . , an) ≥ 2.

5. The Y2K Game is played on a 1×2000 grid as follows. Two players in turn write either
an S or an O in an empty square. The first player who produces three consecutive boxes
that spell SOS wins. If all boxes are filled without producing SOS then the game is a
draw. Prove that the second player has a winning strategy.

6. Let ABCD be an isosceles trapezoid with AB ‖ CD. The inscribed circle ω of triangle
BCD meets CD at E. Let F be a point on the (internal) angle bisector of ∠DAC
such that EF ⊥ CD. Let the circumscribed circle of triangle ACF meet line CD at
C and G. Prove that the triangle AFG is isosceles.
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29th United States of America Mathematical Olympiad

Part I 9 a.m. -12 noon

May 2, 2000

1. Call a real-valued function f very convex if

f(x) + f(y)

2
≥ f

(
x + y

2

)
+ |x− y|

holds for all real numbers x and y. Prove that no very convex function exists.

2. Let S be the set of all triangles ABC for which

5

(
1

AP
+

1

BQ
+

1

CR

)
− 3

min{AP, BQ, CR}
=

6

r
,

where r is the inradius and P, Q,R are the points of tangency of the incircle with sides
AB, BC, CA, respectively. Prove that all triangles in S are isosceles and similar to one
another.

3. A game of solitaire is played with R red cards, W white cards, and B blue cards. A
player plays all the cards one at a time. With each play he accumulates a penalty. If
he plays a blue card, then he is charged a penalty which is the number of white cards
still in his hand. If he plays a white card, then he is charged a penalty which is twice
the number of red cards still in his hand. If he plays a red card, then he is charged
a penalty which is three times the number of blue cards still in his hand. Find, as
a function of R,W, and B, the minimal total penalty a player can amass and all the
ways in which this minimum can be achieved.
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29th United States of America Mathematical Olympiad

Part II 1 p.m. - 4 p.m.

May 2, 2000

4. Find the smallest positive integer n such that if n squares of a 1000× 1000 chessboard
are colored, then there will exist three colored squares whose centers form a right
triangle with sides parallel to the edges of the board.

5. Let A1A2A3 be a triangle and let ω1 be a circle in its plane passing through A1 and A2.
Suppose there exist circles ω2, ω3, . . . , ω7 such that for k = 2, 3, . . . , 7, ωk is externally
tangent to ωk−1 and passes through Ak and Ak+1, where An+3 = An for all n ≥ 1.
Prove that ω7 = ω1.

6. Let a1, b1, a2, b2, . . . , an, bn be nonnegative real numbers. Prove that
n∑

i,j=1

min{aiaj, bibj} ≤
n∑

i,j=1

min{aibj, ajbi}.
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USAMO 2000 Solution Notes web.evanchen.cc, updated April 17, 2020

§0 Problems

1. Call a real-valued function f very convex if

f(x) + f(y)

2
≥ f

(
x+ y

2

)
+ |x− y|

holds for all real numbers x and y. Prove that no very convex function exists.

2. Let S be the set of all triangles ABC for which

5

(
1

AP
+

1

BQ
+

1

CR

)
− 3

min{AP,BQ,CR}
=

6

r
,

where r is the inradius and P , Q, R are the points of tangency of the incircle with
sides AB, BC, CA respectively. Prove that all triangles in S are isosceles and
similar to one another.

3. A game of solitaire is played with R red cards, W white cards, and B blue cards. A
player plays all the cards one at a time. With each play he accumulates a penalty.
If he plays a blue card, then he is charged a penalty which is the number of white
cards still in his hand. If he plays a white card, then he is charged a penalty which
is twice the number of red cards still in his hand. If he plays a red card, then he is
charged a penalty which is three times the number of blue cards still in his hand.

Find, as a function of R, W , and B, the minimal total penalty a player can amass
and the number of ways in which this minimum can be achieved.

4. Find the smallest positive integer n such that if n squares of a 1000×1000 chessboard
are colored, then there will exist three colored squares whose centers form a right
triangle with sides parallel to the edges of the board.

5. Let A1A2A3 be a triangle, and let ω1 be a circle in its plane passing through A1

and A2. Suppose there exists circles ω2, ω3, . . . , ω7 such that for k = 2, 3, . . . , 7,
circle ωk is externally tangent to ωk−1 and passes through Ak and Ak+1 (indices
mod 3). Prove that ω7 = ω1.

6. Let a1, b1, a2, b2, . . . , an, bn be nonnegative real numbers. Prove that

n∑
i,j=1

min{aiaj , bibj} ≤
n∑

i,j=1

min{aibj , ajbi}.
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§1 USAMO 2000/1

Call a real-valued function f very convex if

f(x) + f(y)

2
≥ f

(
x+ y

2

)
+ |x− y|

holds for all real numbers x and y. Prove that no very convex function exists.

For C ≥ 0, we say a function f is C-convex

f(x) + f(y)

2
≥ f

(
x+ y

2

)
+ C |x− y| .

Suppose f is C-convex. Let a < b < c < d < e be any arithmetic progression, such
that t = |e− a|. Observe that

f(a) + f(c) ≥ 2f(b) + C · 1

2
t

f(c) + f(e) ≥ 2f(d) + C · 1

2
t

f(b) + f(d) ≥ 2f(c) + C · 1

2
t

Adding the first two to twice the third gives

f(a) + f(e) ≥ 2f(c) + 2C · t.

So we conclude C-convex function is also 2C-convex. This is clearly not okay for C > 0.

3
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§2 USAMO 2000/2

Let S be the set of all triangles ABC for which

5

(
1

AP
+

1

BQ
+

1

CR

)
− 3

min{AP,BQ,CR}
=

6

r
,

where r is the inradius and P , Q, R are the points of tangency of the incircle with sides AB, BC,

CA respectively. Prove that all triangles in S are isosceles and similar to one another.

We will prove the inequality

2

AP
+

5

BQ
+

5

CR
≥ 6

r

with equality when AP : BQ : CR = 1 : 4 : 4. This implies the problem statement.
Letting x = AP , y = BQ, z = CR, the inequality becomes

2

x
+

5

y
+

5

z
≥ 6

√
x+ y + z

xyz
.

Squaring both sides and collecting terms gives

4

x2
+

25

y2
+

25

z2
+

14

yz
≥ 16

xy
+

16

xz
.

If we replace x = 1/a, y = 4/b, z = 4/c, then it remains to prove the inequality

64a2 + 25(b+ c)2 ≥ 64a(b+ c) + 36bc

where equality holds when a = b = c. This follows by two applications of AM-GM:

16
(
4a2 + (b+ c)2

)
≥ 64a(b+ c)

9(b+ c)2 ≥ 36bc.

Again one can tell this is an inequality by counting degrees of freedom.
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§3 USAMO 2000/3

A game of solitaire is played with R red cards, W white cards, and B blue cards. A player plays
all the cards one at a time. With each play he accumulates a penalty. If he plays a blue card,
then he is charged a penalty which is the number of white cards still in his hand. If he plays a
white card, then he is charged a penalty which is twice the number of red cards still in his hand.
If he plays a red card, then he is charged a penalty which is three times the number of blue cards
still in his hand.

Find, as a function of R, W , and B, the minimal total penalty a player can amass and the

number of ways in which this minimum can be achieved.

The minimum penalty is

f(B,W,R) = min(BW, 2WR, 3RB)

or equivalently, the natural guess of “discard all cards of one color first” is actually
optimal (though not necessarily unique).

This can be proven directly by induction. Indeed the base case BWR = 0 (in which
case zero penalty is clearly achievable). The inductive step follows from

f(B,W,R) = min


f(B − 1,W,R) +W

f(B,W − 1, R) + 2R

f(B,W,R− 1) + 3B.

It remains to characterize the strategies. This is a routine calculation, so we just state
the result.

• If any of the three quantities BW , 2WR, 3RB is strictly smaller than the other
three, there is one optimal strategy.

• If BW = 2WR < 3RB, there are W + 1 optimal strategies, namely discarding from
0 to W white cards, then discarding all blue cards. (Each white card discarded still
preserves BW = 2WR.)

• If 2WR = 3RB < BW , there are R+ 1 optimal strategies, namely discarding from
0 to R red cards, and then discarding discarding all white cards.

• If 3WR = RB < 2WR, there are B + 1 optimal strategies, namely discarding from
0 to B blue cards, and then discarding discarding all red cards.

• Now suppose BW = 2WR = 3RB. Discarding a card of one color ends up in
exactly one of the previous three cases. This gives an answer of R + W + B
strategies.

5
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§4 USAMO 2000/4

Find the smallest positive integer n such that if n squares of a 1000× 1000 chessboard are colored,

then there will exist three colored squares whose centers form a right triangle with sides parallel

to the edges of the board.

The answer is n = 1999.
For a construction with n = 1998, take a punctured L as illustrated below (with 1000

replaced by 4): 
1
1
1

1 1 1

 .
We now show that if there is no right triangle, there are at most 1998 tokens (colored

squares). In every column with more than two tokens, we have token emit a bidirectional
horizontal death ray (laser) covering its entire row: the hypothesis is that the death ray
won’t hit any other tokens.

Assume there are n tokens and that n > 1000. Then obviously some column has more
than two tokens, so at most 999 tokens don’t emit a death ray (namely, any token in its
own column). Thus there are at least n−999 death rays. On the other hand, we can have
at most 999 death rays total (since it would not be okay for the whole board to have death
rays, as some row should have more than two tokens). Therefore, n ≤ 999 + 999 = 1998
as desired.
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§5 USAMO 2000/5

Let A1A2A3 be a triangle, and let ω1 be a circle in its plane passing through A1 and A2. Suppose

there exists circles ω2, ω3, . . . , ω7 such that for k = 2, 3, . . . , 7, circle ωk is externally tangent to

ωk−1 and passes through Ak and Ak+1 (indices mod 3). Prove that ω7 = ω1.

The idea is to keep track of the subtended arc ÂiAi+1 of ωi for each i. To this end, let
β = ]A1A2A3, γ = ]A2A3A1 and α = ]A1A2A3.

O1 O2

O3

A1

A2

A3

α

β

γ

Initially, we set θ = ]O1A2A1. Then we compute

]O1A2A1 = θ

]O2A3A2 = −β − θ
]O3A1A3 = β − γ + θ

]O4A2A1 = (γ − β − α)− θ

and repeating the same calculation another round gives

]O7A2A1 = k − (k − θ) = θ

with k = γ − β − α. This implies O7 = O1, so ω7 = ω1.

7
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§6 USAMO 2000/6, proposed by Gheorghita Zbaganu

Let a1, b1, a2, b2, . . . , an, bn be nonnegative real numbers. Prove that

n∑
i,j=1

min{aiaj , bibj} ≤
n∑

i,j=1

min{aibj , ajbi}.

We present two solutions.

First solution by creating a single min (Vincent Huang and Ravi Boppana) Let
bi = riai for each i, and rewrite the inequality as∑

i,j

aiaj [min(ri, rj)−min(1, rirj)] ≥ 0.

We now do the key manipulation to convert the double min into a separate single min.
Let εi = +1 if ri ≥ 1, and εi = −1 otherwise, and let si = |ri − 1|. Then we pass to
absolute values:

2 min(ri, rj)− 2 min(1, rirj) = |rirj − 1| − |ri − rj | − (ri − 1)(rj − 1)

= |rirj − 1| − |ri − rj | − εiεjsisj
= εiεj min (|1− rirj ± (ri − rj)|)− εiεjsisj
= εiεj min (si(rj + 1), sj(ri + 1))− εiεjsisj

= (εisi)(εjsj) min

(
rj + 1

sj
− 1,

ri + 1

si
− 1

)
.

So let us denote xi = aiεisi ∈ R, and ti = ri+1
si
− 1 ∈ R≥0. Thus it suffices to prove

that:

Claim — We have ∑
i,j

xixj min(ti, tj) ≥ 0

for arbitrary xi ∈ R, ti ∈ R≥0.

Proof. One can just check this “by hand” by assuming t1 ≤ t2 ≤ · · · ≤ tn; then the
left-hand side becomes∑

i

tix
2
i + 2

∑
i<j

2tixixj =
∑
i

(ti − ti−1)(xi + xi+1 + · · ·+ xn)2 ≥ 0.

There is also a nice proof using the integral identity

min(ti, tj) =

∫ ∞
0

1(u ≤ ti)1(u ≤ tj) du

8
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where the 1 are indicator functions. Indeed,∑
i,j

xixj min(ti, tj) =
∑
i,j

xixj

∫ ∞
0

1(u ≤ ti)1(u ≤ tj) du

=

∫ ∞
0

∑
i

xi1(u ≤ ti)
∑
j

xj1(u ≤ tj) du

=

∫ ∞
0

(∑
i

xi1(u ≤ ti)

)2

du

≥ 0.

Second solution by smoothing (Alex Zhai) The case n = 1 is immediate, so we’ll
proceed by induction on n ≥ 2.

Again, let bi = riai for each i, and write the inequality as

Ln(a1, . . . , an, r1, . . . , rn)
def
=
∑
i,j

aiaj [min(ri, rj)−min(1, rirj)] ≥ 0.

First note that if r1 = r2 then

Ln(a1, a2, a3, . . . , r1, r1, r3 . . . ) = Ln−1(a1 + a2, a3, . . . , r1, r3, . . . )

and so our goal is to smooth to a situation where two of the ri’s are equal, so that we
may apply induction.

On the other hand, Ln is a piecewise linear function in r1 ≥ 0. Let us smooth r1 then.
Note that if the minimum is attained at r1 = 0, we can ignore a1 and reduce to the
(n− 1)-variable case. On the other hand, the minimum must be achieved at a cusp which
opens upward, which can only happen if rirj = 1 for some j. (The ri = rj cusps open
downward, sadly.)

In this way, whenever some ri is not equal to the reciprocal of any other r•, we can
smooth it. This terminates; so we may smooth until we reach a situation for which

{r1, . . . , rn} = {1/r1, . . . , 1/rn}.

Now, assume WLOG that r1 = maxi ri and r2 = mini ri, hence r1r2 = 1 and r1 ≥ 1 ≥ r2.
We isolate the contributions from a1, a2, r1 and r2.

Ln(. . . ) = a21 [r1 − 1] + a22
[
r2 − r22

]
+ 2a1a2 [r2 − 1]

+ 2a1 [(a3r3 + · · ·+ anrn)− (a3 + · · ·+ an)]

+ 2a2r2 [(a3 + · · ·+ an)− (a3r3 + · · ·+ anrn)]

+
n∑

i=3

n∑
j=3

aiaj [min(ri, rj)−min(1, rirj)] .

The idea now is to smooth via

(a1, a2, r1, r2) −→
(
a1,

1

t
a2,

1

t
r1, tr2

)
where t ≥ 1 is such that 1

t r1 ≥ max(1, r3, . . . , rn) holds. (This choice is such that a1
and a2r2 are unchanged, because we don’t know the sign of

∑
i≥3(1− ri)ai and so the

9
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post-smoothing value is still at least the max.) Then,

Ln(a1, a2, . . . , r1, r2, . . . )− Ln

(
a1,

1

t
a2, . . . ,

1

t
r1, tr2

)
= a21

(
r1 −

1

t
r1

)
+ a22

(
r2 −

1

t
r2

)
+ 2a1a2

(
1

t
− 1

)
=

(
1− 1

t

)(
r1a

2
1 + r2a

2
2 − 2a1a2

)
≥ 0

the last line by AM-GM. Now pick t = r1
max(1,r3,...,rn)

, and at last we can induct down.
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30th United States of America Mathematical Olympiad

Part I 9 a.m. - 12 p.m.

May 1, 2001

1. Each of eight boxes contains six balls. Each ball has been colored with one of n colors,
such that no two balls in the same box are the same color, and no two colors occur
together in more than one box. Determine, with justification, the smallest integer n
for which this is possible.

2. Let ABC be a triangle and let ω be its incircle. Denote by D1 and E1 the points where
ω is tangent to sides BC and AC, respectively. Denote by D2 and E2 the points on
sides BC and AC, respectively, such that CD2 = BD1 and CE2 = AE1, and denote
by P the point of intersection of segments AD2 and BE2. Circle ω intersects segment
AD2 at two points, the closer of which to the vertex A is denoted by Q. Prove that
AQ = D2P .

3. Let a, b, and c be nonnegative real numbers such that

a2 + b2 + c2 + abc = 4.

Prove that
0 ≤ ab + bc + ca− abc ≤ 2.

Copyright c© Committee on the American Mathematics Competitions,
Mathematical Association of America



30th United States of America Mathematical Olympiad

Part II 1 p.m. - 4 p.m.

May 1, 2001

4. Let P be a point in the plane of triangle ABC such that the segments PA, PB, and
PC are the sides of an obtuse triangle. Assume that in this triangle the obtuse angle
opposes the side congruent to PA. Prove that ∠BAC is acute.

5. Let S be a set of integers (not necessarily positive) such that

(a) there exist a, b ∈ S with gcd(a, b) = gcd(a− 2, b− 2) = 1;

(b) if x and y are elements of S (possibly equal), then x2 − y also belongs to S.

Prove that S is the set of all integers.

6. Each point in the plane is assigned a real number such that, for any triangle, the
number at the center of its inscribed circle is equal to the arithmetic mean of the
three numbers at its vertices. Prove that all points in the plane are assigned the same
number.

Copyright c© Committee on the American Mathematics Competitions,
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This is an compilation of solutions for the 2001 USAMO. Some of the
solutions are my own work, but many are from the official solutions provided
by the organizers (for which they hold any copyrights), and others were found
on the Art of Problem Solving forums.

Corrections and comments are welcome!
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§0 Problems

1. Each of eight boxes contains six balls. Each ball has been colored with one of n
colors, such that no two balls in the same box are the same color, and no two colors
occur together in more than one box. Find with proof the smallest possible n.

2. Let ABC be a triangle and let ω be its incircle. Denote by D1 and E1 the points
where ω is tangent to sides BC and AC, respectively. Denote by D2 and E2 the
points on sides BC and AC, respectively, such that CD2 = BD1 and CE2 = AE1,
and denote by P the point of intersection of segments AD2 and BE2. Circle ω
intersects segment AD2 at two points, the closer of which to the vertex A is denoted
by Q. Prove that AQ = D2P .

3. Let a, b, c be nonnegative real numbers such that a2 + b2 + c2 + abc = 4. Show that

0 ≤ ab+ bc+ ca− abc ≤ 2.

4. Let ABC be a triangle and P any point such that PA, PB, PC are the sides of
an obtuse triangle, with PA the longest side. Prove that ∠BAC is acute.

5. Let S ⊆ Z be such that:

(a) there exist a, b ∈ S with gcd(a, b) = gcd(a− 2, b− 2) = 1;

(b) if x and y are element of S (possibly equal), then x2 − y also belongs to S.

Prove that S = Z.

6. Each point in the plane is assigned a real number. Suppose that for any nonde-
generate triangle, the number at its incenter is the arithmetic mean of the three
numbers at its vertices. Prove that all points in the plane are equal to each other.
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§1 USAMO 2001/1

Each of eight boxes contains six balls. Each ball has been colored with one of n colors, such that

no two balls in the same box are the same color, and no two colors occur together in more than

one box. Find with proof the smallest possible n.

The answer is n = 23. Shown below is a construction using that many colors, which
we call {1, 2, . . . , 15, a, . . . , f,X, Y }.

X X X 1 2 3 4 5
1 6 11 6 7 8 9 10
2 7 12 11 12 13 14 15
3 8 13 Y Y Y a b
4 9 14 a c e c d
5 10 15 b d f e f


We present now two proofs that n = 23 is best possible. I think the first is more motivated
— it will actually show us how we could come up with the example above.

First solution (hands-on) We say a color x is overrated if it is used at least three times.
First we make the following smoothing argument.

Claim — Suppose some box contains a ball of overrated color x plus a ball of color
y used only once. Then we can change one ball of color x to color y while preserving
all the conditions.

Proof. Obvious. (Though the color x could cease to be overrated after this operation.)

By applying this operation as many times as possible, we arrive at a situation in which
whenever we have a box with an overrated color, the other colors in the box are used
twice or more.

Assume now n ≤ 23 and the assumption; we will show the equality case must of the
form we gave. Since there are a total of 48 balls, at least two colors are overrated. Let X
be an overrated color and take three boxes where it appears. Then there are 15 more
distinct colors, say {1, . . . , 15} lying in those boxes. Each of them must appear at least
once more, so we arrive at the situation

X X X 1 2 3 4 5
1 6 11 6 7 8 9 10
2 7 12 11 12 13 14 15
3 8 13
4 9 14
5 10 15


up to harmless permutation of the color names. Now, note that none of these 15 colors
can reappear. So it remains to fill up the last five boxes.

Now, there is at least one more overrated color, distinct from any we have seen; call
it Y . In the three boxes Y appears in, there must be six new colors, and this gives the
lower bound n ≥ 1 + 15 + 1 + 6 = 23 which we sought, with equality occurring as we saw
above.
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Remark (Partial progresses). The fact that
(
16
2

)
= 120 = 8

(
6
2

)
(suggesting the bound

n ≥ 16) is misleading and not that helpful.
There is a simple argument showing that n should be much larger than 16. Imagine

opening the boxes in any order. The first box must contain six new colors. The second box
must contain five new colors, and so on; thus n ≥ 6 + 5 + 4 + 3 + 2 + 1 = 21. This is sharp
for seven boxes, as the example below shows.

1 1 2 3 4 5 6
2 7 7 8 9 10 11
3 8 12 12 13 14 15
4 9 13 16 16 17 18
5 10 14 17 19 19 20
6 11 15 18 20 21 21


However, one cannot add an eight box, suggesting the answer should be a little larger than
21. One possible eight box is {1, 12, 19, a, b, c} which gives n ≤ 24; but the true answer is a
little trickier.

Second solution (slick) Here is a short proof from the official solutions of the bound.
Consider the 8× 6 grid of colors as before. For each ball b, count the number of times nb
its color is used, and write the fraction 1

nb
.

On the one hand, we should have

n =
∑

all 48 balls b

1

nb
.

On the other hand, for any given box B, we have
∑

b∈B(nb − 1) ≤ 7, as among the
other seven boxes at most one color from B appears. Therefore,

∑
b∈B nb ≤ 13, and a

smoothing argument this implies∑
b∈B

1

nb
≥ 1

3
· 1 +

1

2
· 5 =

17

6
.

Thus, n ≥ 8 · 176 = 22.66 . . . , so n ≥ 23.

4

http://web.evanchen.cc


USAMO 2001 Solution Notes web.evanchen.cc, updated April 30, 2020

§2 USAMO 2001/2

Let ABC be a triangle and let ω be its incircle. Denote by D1 and E1 the points where ω is

tangent to sides BC and AC, respectively. Denote by D2 and E2 the points on sides BC and AC,

respectively, such that CD2 = BD1 and CE2 = AE1, and denote by P the point of intersection

of segments AD2 and BE2. Circle ω intersects segment AD2 at two points, the closer of which

to the vertex A is denoted by Q. Prove that AQ = D2P .

We have that P is the Nagel point

P = (s− a : s− b : s− c) .

Therefore,
PD2

AD2
=

s− a
(s− a) + (s− b) + (s− c)

=
s− a
s

.

Meanwhile, Q is the antipode of D1. The classical homothety at A mapping Q to D1 (by
mapping the incircle to the A-excircle) has ratio s−a

s as well (by considering the length
of the tangents from A), so we are done.
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§3 USAMO 2001/3

Let a, b, c be nonnegative real numbers such that a2 + b2 + c2 + abc = 4. Show that

0 ≤ ab+ bc+ ca− abc ≤ 2.

The left-hand side of the inequality is trivial; just note that min {a, b, c} ≤ 1. Hence,
we focus on the right side. We use Lagrange Multipliers.

Define
U =

{
(a, b, c) | a, b, c > 0 and a2 + b2 + c2 < 1000

}
.

This is an intersection of open sets, so it is open. Its closure is

U =
{

(a, b, c) | a, b, c ≥ 0 and a2 + b2 + c2 ≤ 1000
}
.

Hence the constraint set
S =

{
x ∈ U : g(x) = 4

}
is compact, where g(a, b, c) = a2 + b2 + c2 + abc.

Define
f(a, b, c) = a2 + b2 + c2 + ab+ bc+ ca.

It’s equivalent to show that f ≤ 6 subject to g. Over S, it must achieve a global maximum.
Now we consider two cases.

If x lies on the boundary, that means one of the components is zero (since a2+b2+c2 =
1000 is clearly impossible). WLOG c = 0, then we wish to show a2 + b2 + ab ≤ 6 for
a2 + b2 = 4, which is trivial.

Now for the interior U , we may use the method of Lagrange Multipliers. Consider a
local maximum x ∈ U . Compute

∇f = 〈2a+ b+ c, 2b+ c+ a, 2c+ a+ b〉

and
∇g = 〈2a+ bc, 2b+ ca, 2c+ ab〉 .

Of course, ∇g 6= 0 everywhere, so introducing our multiplier yields

〈2a+ b+ c, a+ 2b+ c, a+ b+ 2c〉 = λ 〈2a+ bc, 2b+ ca, 2c+ ab〉 .

Note that λ 6= 0 since a, b, c > 0. Subtracting 2a+ b+ c = λ(2a+ bc) from a+ 2b+ c =
λ(2b+ ca) implies that

(a− b)([2λ− 1]− λc) = 0.

We can derive similar equations for the others. Hence, we have three cases.

1. If a = b = c, then a = b = c = 1, and this satisfies f(1, 1, 1) ≤ 6.

2. If a, b, c are pairwise distinct, then we derive a = b = c = 2− λ−1, contradiction.

3. Now suppose that a = b 6= c.

Meanwhile, the constraint (with a = b) reads

a2 + b2 + c2 + abc = 4 ⇐⇒ c2 + a2c+ (2a2 − 4) = 0

⇐⇒ (c+ 2)(c− (2− a2)) = 0

6
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which since c > 0 gives c = 2− a2.
Noah Walsh points out that at this point, we don’t need to calculate the critical
point; we just directly substitute a = b and c = 2− a2 into the desired inequality:

a2 + 2a(2− a)2 − a2(2− a)2 = 2− (a− 1)2(a2 − 4a+ 2) ≤ 0.

So any point here satisfies the inequality anyways.

Remark. It can actually be shown that the critical point in the third case we skipped is
pretty close: it is given by

a = b =
1 +
√

17

4
c =

1

8

(
7−
√

17
)
.

This satisfies

f(a, b, c) = 3a2 + 2ac+ c2 =
1

32

(
121 + 17

√
17
)
≈ 5.97165

which is just a bit less than 6.

Remark. Equality holds for the upper bound if (a, b, c) = (1, 1, 1) or (a, b, c) = (
√

2,
√

2, 0)
and permutations. The lower bound is achieved if (a, b, c) = (2, 0, 0) and permutations.

7

http://web.evanchen.cc


USAMO 2001 Solution Notes web.evanchen.cc, updated April 30, 2020

§4 USAMO 2001/4

Let ABC be a triangle and P any point such that PA, PB, PC are the sides of an obtuse

triangle, with PA the longest side. Prove that ∠BAC is acute.

Using Ptolemy’s inequality and Cauchy-Schwarz,

PA ·BC ≤ PB ·AC + PC ·AB

≤
√

(PB2 + PC2)(AB2 +AC2)

<
√
PA2 · (AB2 +AC)2 = PA ·

√
AB2 +AC2

meaning BC2 < AB2 +AC2, so ∠BAC is acute.
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§5 USAMO 2001/5

Let S ⊆ Z be such that:

(a) there exist a, b ∈ S with gcd(a, b) = gcd(a− 2, b− 2) = 1;

(b) if x and y are element of S (possibly equal), then x2 − y also belongs to S.

Prove that S = Z.

Call an integer d > 0 shifty if S = S + d (meaning S is invariant under shifting by d).
First, note that if u, v ∈ S, then for any x ∈ S,

v2 − (u2 − x) = (v2 − u2) + x ∈ S.

Since we can easily check that |S| > 1 and S 6= {n,−n} we conclude exists a shifty
integer.

We claim 1 is shifty, which implies the problem. Assume for contradiction not that 1
is not shifty. Then for GCD reasons the set of shifty integers must be dZ for some d ≥ 2.

Claim — We have S ⊆
{
x : x2 ≡ m (mod d)

}
for some fixed m.

Proof. Otherwise if we take any p, q ∈ S with distinct squares modulo d, then q2−p2 6≡ 0
(mod d) is shifty, which is impossible.

Now take a, b ∈ S as in (a). In that case we need to have

a2 ≡ b2 ≡ (a2 − a)2 ≡ (b2 − b)2 (mod d).

Passing to a prime p | d, we have the following:

• Since a2 ≡ (a2 − a)2 (mod p) or equivalently a3(a− 2) ≡ 0 (mod p), either a ≡ 0
(mod p) or a ≡ 2 (mod p).

• Similarly, either b ≡ 0 (mod p) or b ≡ 2 (mod p).

• Since a2 ≡ b2 (mod p), or a ≡ ±b (mod p), we find either a ≡ b ≡ 0 (mod p) or
a ≡ b ≡ 2 (mod p) (even if p = 2).

This is a contradiction.

Remark. The condition (a) cannot be dropped, since otherwise we may take S = {2 (mod p)}
or S = {0 (mod p)}, say.

9
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§6 USAMO 2001/6, proposed by Bjorn Poonen

Each point in the plane is assigned a real number. Suppose that for any nondegenerate triangle,

the number at its incenter is the arithmetic mean of the three numbers at its vertices. Prove that

all points in the plane are equal to each other.

First, we claim that in an isosceles trapezoid ABCD we have a+ c = b+ d. Indeed,
suppose WLOG that rays BA and CD meet at X. Then triangles XAC and XBD share
an incircle, proving the claim.

Now, given any two points A and B, construct regular pentagon ABCDE. We have
a+ c = b+ d = c+ e = d+ a = e+ b, so a = b = c = d = e.

10
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31st United States of America Mathematical Olympiad

Cambridge, Massachusetts

Part I 1 p.m. - 5:30 p.m.

May 3, 2002

1. Let S be a set with 2002 elements, and let N be an integer with 0 ≤ N ≤ 22002. Prove
that it is possible to color every subset of S either black or white so that the following
conditions hold:

(a) the union of any two white subsets is white;

(b) the union of any two black subsets is black;

(c) there are exactly N white subsets.

2. Let ABC be a triangle such that(
cot

A

2

)2

+

(
2 cot

B

2

)2

+

(
3 cot

C

2

)2

=

(
6s

7r

)2

,

where s and r denote its semiperimeter and its inradius, respectively. Prove that
triangle ABC is similar to a triangle T whose side lengths are all positive integers with
no common divisors and determine these integers.

3. Prove that any monic polynomial (a polynomial with leading coefficient 1) of degree n
with real coefficients is the average of two monic polynomials of degree n with n real
roots.

Copyright c© Committee on the American Mathematics Competitions,
Mathematical Association of America



31st United States of America Mathematical Olympiad

Cambridge, Massachusetts

Part II 1 p.m. - 5:30 p.m.

May 4, 2002

4. Let R be the set of real numbers. Determine all functions f : R→ R such that

f(x2 − y2) = xf(x)− yf(y)

for all pairs of real numbers x and y.

5. Let a, b be integers greater than 2. Prove that there exists a positive integer k and a
finite sequence n1, n2, . . . , nk of positive integers such that n1 = a, nk = b, and nini+1

is divisible by ni + ni+1 for each i (1 ≤ i < k).

6. I have an n×n sheet of stamps, from which I’ve been asked to tear out blocks of three
adjacent stamps in a single row or column. (I can only tear along the perforations
separating adjacent stamps, and each block must come out of the sheet in one piece.)
Let b(n) be the smallest number of blocks I can tear out and make it impossible to
tear out any more blocks. Prove that there are real constants c and d such that

1

7
n2 − cn ≤ b(n) ≤ 1

5
n2 + dn

for all n > 0.

Copyright c© Committee on the American Mathematics Competitions,
Mathematical Association of America
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§0 Problems

1. Let S be a set with 2002 elements, and let N be an integer with 0 ≤ N ≤ 22002.
Prove that it is possible to color every subset of S either black or white so that the
following conditions hold:

(a) the union of any two white subsets is white;

(b) the union of any two black subsets is black;

(c) there are exactly N white subsets.

2. Let ABC be a triangle such that(
cot

A

2

)2

+

(
2 cot

B

2

)2

+

(
3 cot

C

2

)2

=

(
6s

7r

)2

,

where s and r denote its semiperimeter and its inradius, respectively. Prove that
triangle ABC is similar to a triangle T whose side lengths are all positive integers
with no common divisors and determine these integers.

3. Prove that any monic polynomial (a polynomial with leading coefficient 1) of degree
n with real coefficients is the average of two monic polynomials of degree n with n
real roots.

4. Determine all functions f : R→ R such that

f(x2 − y2) = xf(x)− yf(y)

for all pairs of real numbers x and y.

5. Let a, b be integers greater than 2. Prove that there exists a positive integer k and
a finite sequence n1, n2, . . . , nk of positive integers such that n1 = a, nk = b, and
nini+1 is divisible by ni + ni+1 for each i (1 ≤ i < k).

6. I have an n × n sheet of stamps, from which I’ve been asked to tear out blocks
of three adjacent stamps in a single row or column. (I can only tear along the
perforations separating adjacent stamps, and each block must come out of the sheet
in one piece.) Let b(n) be the smallest number of blocks I can tear out and make it
impossible to tear out any more blocks. Prove that there are real constants c and d
such that

1

7
n2 − cn ≤ b(n) ≤ 1

5
n2 + dn

for all n > 0.
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§1 USAMO 2002/1

Let S be a set with 2002 elements, and let N be an integer with 0 ≤ N ≤ 22002. Prove that it is
possible to color every subset of S either black or white so that the following conditions hold:

(a) the union of any two white subsets is white;

(b) the union of any two black subsets is black;

(c) there are exactly N white subsets.

We will solve the problem with 2002 replaced by an arbitrary integer n ≥ 0. In other
words, we prove:

Claim — For any nonnegative integers n and N with 0 ≤ N ≤ 2n, it is possible to
color the 2n subsets of {1, . . . , n} black and white satisfying the conditions of the
problem.

The proof is by induction on n. When n = 1 the problem is easy to do by hand, so this
gives us a base case.

For the inductive step, we divide into two cases:

• If N ≤ 2n−1, then we take a coloring of subsets of {1, . . . , n− 1} with N white sets;
then we color the remaining 2n−1 sets (which contain n) black.

• If N > 2n−1, then we take a coloring of subsets of {1, . . . , n − 1} with N − 2n−1

white sets; then we color the remaining 2n−1 sets (which contain n) white.

3

http://web.evanchen.cc


USAMO 2002 Solution Notes web.evanchen.cc, updated April 17, 2020

§2 USAMO 2002/2

Let ABC be a triangle such that(
cot

A

2

)2

+

(
2 cot

B

2

)2

+

(
3 cot

C

2

)2

=

(
6s

7r

)2

,

where s and r denote its semiperimeter and its inradius, respectively. Prove that triangle ABC is

similar to a triangle T whose side lengths are all positive integers with no common divisors and

determine these integers.

Let x = s− a, y = s− b, z = s− c in the usual fashion, then the equation reads

x2 + 4y2 + 9z2 =

(
6

7
(x + y + z)

)2

.

However, by Cauchy-Schwarz, we have(
1 + 1

4 + 1
9

) (
x2 + 4y2 + 9z2

)
≥ (x + y + z)2

with equality if and only if 1 : 1
2 : 1

3 = x : 2y : 3z, id est x : y : z = 1 : 1
4 : 1

9 = 36 : 9 : 4.
This is equivalent to y + z : z + x : x + y = 13 : 40 : 45.

Remark. You can tell this is not a geometry problem because you eliminate the cotangents
right away to get an algebra problem. . . and then you realize the problem claims that one
equation can determine three variables up to scaling, at which point you realize it has to be
an inequality (otherwise degrees of freedom don’t work). So of course, Cauchy-Schwarz. . .
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§3 USAMO 2002/3

Prove that any monic polynomial (a polynomial with leading coefficient 1) of degree n with real

coefficients is the average of two monic polynomials of degree n with n real roots.

First,

Lemma

If p is a monic polynomial of degree n, and p(1)p(2) < 0, p(2)p(3) < 0, . . . ,
p(n− 1)p(n) < 0 then p has n real roots.

Proof. The intermediate value theorem already guarantees the existence of n − 1 real
roots.

The last root is obtained by considering cases on n (mod 2). If n is even, then p(1)
and p(n) have opposite sign, while we must have either

lim
x→−∞

p(x) = lim
x→∞

p(x) = ±∞

so we get one more root. The n odd case is similar, with p(1) and p(n) now having the
same sign, but limx→−∞ p(x) = − limx→∞ p(x) instead.

Let f(n) be the monic polynomial and let M > 1000 maxt=1,...,n |f(t)|+ 1000. Then
we may select reals a1, . . . , an and b1, . . . , bn such that for each k = 1, . . . , n, we have

ak + bk = 2f(k)

(−1)kak > M

(−1)k+1bk > M.

We may interpolate monic polynomials g and h through the ak and bk (if the ak, bk are
selected “generically” from each other). Then one can easily check f = 1

2(g + h) works.

Remark. This is like Cape Town all over again. . .
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§4 USAMO 2002/4

Determine all functions f : R→ R such that

f(x2 − y2) = xf(x)− yf(y)

for all pairs of real numbers x and y.

The answer is f(x) = cx, c ∈ R (these obviously work).
First, by putting x = 0 and y = 0 respectively we have

f(x2) = xf(x) and f(−y2) = −yf(y).

From this we deduce that f is odd, in particular f(0) = 0. Then, we can rewrite the
given as f(x2 − y2) + f(y2) = f(x2). Combined with the fact that f is odd, we deduce
that f is additive (i.e. f(a + b) = f(a) + f(b)).

Remark (Philosophy). At this point we have f(x2) ≡ xf(x) and f additive, and everything
we have including the given equation is a direct corollary of these two. So it makes sense to
only focus on these two conditions.

Then

f((x + 1)2) = (x + 1)f(x + 1)

=⇒ f(x2) + 2f(x) + f(1) = (x + 1)f(x) + (x + 1)f(1)

which readily gives f(x) = f(1)x.
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§5 USAMO 2002/5

Let a, b be integers greater than 2. Prove that there exists a positive integer k and a finite

sequence n1, n2, . . . , nk of positive integers such that n1 = a, nk = b, and nini+1 is divisible by

ni + ni+1 for each i (1 ≤ i < k).

Consider a graph G on the vertex set {3, 4, . . . } and with edges between v, w if
v + w | vw; the problem is equivalent to showing that G is connected.

First, note that n is connected to n(n − 1), n(n − 1)(n − 2), etc. up to n!. But for
n > 2, n! is connected to (n + 1)! too:

• n!→ (n + 1)! if n is even

• n!→ 2n!→ (n + 1)! if n is odd.

This concludes the problem.
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§6 USAMO 2002/6

I have an n× n sheet of stamps, from which I’ve been asked to tear out blocks of three adjacent
stamps in a single row or column. (I can only tear along the perforations separating adjacent
stamps, and each block must come out of the sheet in one piece.) Let b(n) be the smallest number
of blocks I can tear out and make it impossible to tear out any more blocks. Prove that there are
real constants c and d such that

1

7
n2 − cn ≤ b(n) ≤ 1

5
n2 + dn

for all n > 0.

For the lower bound: there are 2n(n− 2) places one could put a block. Note that each
block eliminates at most 14 such places.

For the upper bound, the construction of 1
5 is easy to build. Here is an illustration of

one possible construction for n = 9 which generalizes readily, using only vertical blocks.

A E I L P
A E G L P R
A C G L N R

C G J N R
C F J N Q

B F J M Q
B F H M Q S
B D H M O S

D H K O S


Actually, for the lower bound, one may improve 1/7 to 1/6. Count the number A of

pairs of adjacent squares one of which is torn out and the other which is not:

• For every deleted block, there are eight neighboring squares, at least two on each
long edge which have been deleted too. Hence N ≤ 6b(n).

• For every block still alive and not on the border, there are four neighboring squares,
and clearly at least two are deleted. Hence N ≥ 2

(
(n− 2)2 − 3b(n)

)
.

Collating these solves the problem.
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32nd United States of America Mathematical Olympiad

Day I 12:30 PM – 5 PM

April 29, 2003

1. Prove that for every positive integer n there exists an n-digit number divisible by 5n all of
whose digits are odd.

2. A convex polygon P in the plane is dissected into smaller convex polygons by drawing all
of its diagonals. The lengths of all sides and all diagonals of the polygon P are rational
numbers. Prove that the lengths of all sides of all polygons in the dissection are also
rational numbers.

3. Let n 6= 0. For every sequence of integers

A = a0, a1, a2, . . . , an

satisfying 0 ≤ ai ≤ i, for i = 0, . . . , n, define another sequence

t(A) = t(a0), t(a1), t(a2), . . . , t(an)

by setting t(ai) to be the number of terms in the sequence A that precede the term ai

and are different from ai. Show that, starting from any sequence A as above, fewer than
n applications of the transformation t lead to a sequence b such that t(b) = b.

Copyright c© Committee on the American Mathematics Competitions,
Mathematical Association of America



32nd United States of America Mathematical Olympiad

Day II 12:30 PM – 5 PM

April 30, 2003

4. Let ABC be a triangle. A circle passing through A and B intersects segments AC and
BC at D and E, respectively. Lines AB and DE intersect at F while lines BD and CF
intersect at M . Prove that MF = MC if and only if MB ·MD = MC2.

5. Let a, b, c be positive real numbers. Prove that

(2a + b + c)2

2a2 + (b + c)2
+

(2b + c + a)2

2b2 + (c + a)2
+

(2c + a + b)2

2c2 + (a + b)2
≤ 8.

6. A positive integer is written at each vertex of a regular hexagon so that the sum of all
numbers written is 20032003. Bert makes a sequence of moves of the following form: Bert
picks a vertex and replaces the number written there by the absolute value of the difference
between the numbers written at the two neighboring vertices. Prove that Bert can always
make a sequence of moves ending at the position with all six numbers equal to zero.

Copyright c© Committee on the American Mathematics Competitions,
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32nd United States of America Mathematical Olympiad

Proposed Solutions

May 1, 2003

Remark: The general philosophy of this marking scheme follows that of IMO 2002. This scheme
encourages complete solutions. Partial credits will be given under more strict circumstances. Each
solution by students shall be graded from one of the two approaches: (1) from 7 going down (a
complete solution with possible minor errors); (2) from 0 going up (a solution missing at least one
critical idea.) Most partial credits are not additive. Because there are many results need to be
proved progressively in problem 3, most partial credits in this problem are accumulative. Many
problems have different approaches. Graders are encouraged to choose the approach that most
favorable to students. But the partial credits from different approaches are not additive.

1. Prove that for every positive integer n there exists an n-digit number divisible by 5n all of
whose digits are odd.

Solution: We proceed by induction. The property is clearly true for n = 1. Assume that
N = a1a2 . . . an is divisible by 5n and has only odd digits. Consider the numbers

N1 = 1a1a2 . . . an = 1 · 10n + 5nM = 5n(1 · 2n + M),
N2 = 3a1a2 . . . an = 3 · 10n + 5nM = 5n(3 · 2n + M),
N3 = 5a1a2 . . . an = 5 · 10n + 5nM = 5n(5 · 2n + M),
N4 = 7a1a2 . . . an = 7 · 10n + 5nM = 5n(7 · 2n + M),
N5 = 9a1a2 . . . an = 9 · 10n + 5nM = 5n(9 · 2n + M).

The numbers 1 · 2n + M, 3 · 2n + M, 5 · 2n + M, 7 · 2n + M, 9 · 2n + M give distinct remainders
when divided by 5. Otherwise the difference of some two of them would be a multiple of
5, which is impossible, because 2n is not a multiple of 5, nor is the difference of any two of
the numbers 1, 3, 5, 7, 9. It follows that one of the numbers N1, N2, N3, N4, N5 is divisible by
5n · 5, and the induction is complete.



2. A convex polygon P in the plane is dissected into smaller convex polygons by drawing all of
its diagonals. The lengths of all sides and all diagonals of the polygon P are rational numbers.
Prove that the lengths of all sides of all polygons in the dissection are also rational numbers.

Solution: Let P = A1A2 . . . An, where n is an integer with n ≥ 3. The problem is trivial
for n = 3 because there are no diagonals and thus no dissections. We assume that n ≥ 4.
Our proof is based on the following Lemma.

Lemma 1. Let ABCD be a convex quadrilateral such that all its sides and diagonals have
rational lengths. If segments AC and BD meet at P , then segments AP , BP , CP , DP all
have rational lengths.

A t

A s

A i
A j

C l

It is clear by Lemma 1 that the desired result holds when P is a convex quadrilateral. Let
AiAj (1 ≤ i < j ≤ n) be a diagonal of P. Assume that C1, C2, . . . , Cm are the consecutive
division points on diagonal AiAj (where point C1 is the closest to vertex Ai and Cm is the
closest to Aj). Then the segments C`C`+1, 1 ≤ ` ≤ m− 1, are the sides of all polygons in the
dissection. Let C` be the point where diagonal AiAj meets diagonal AsAt. Then quadrilateral
AiAsAjAt satisfies the conditions of Lemma 1. Consequently, segments AiC` and C`Aj have
rational lengths. Therefore, segments AiC1, AiC2, . . . , AjCm all have rational lengths. Thus,
C`C`+1 = AC`+1 − AC` is rational. Because i, j, ` are arbitrarily chosen, we proved that all
sides of all polygons in the dissection are also rational numbers.

Now we present four proofs of Lemma 1 to finish our proof.

• First approach We show only that segment AP is rational, the others being similar.
Introduce Cartesian coordinates with A = (0, 0) and C = (c, 0). Put B = (a, b) and
D = (d, e). Then by hypothesis, the numbers

AB =
√

a2 + b2, AC = c, AD =
√

d2 + e2,

BC =
√

(a− c)2 + b2, BD =
√

(a− d)2 + (b− e)2, CD =
√

(d− c)2 + e2,

are rational. In particular,

BC2 −AB2 −AC2 = (a− c)2 + b2 − (a2 + b2)− c2 = 2ac

is rational. Because c 6= 0, a is rational. Likewise d is rational.
Now we have that b2 = AB2−a2, e2 = AD2−d2, (b−e)2 = BD2− (a−d)2 are rational,
and so that 2be = b2 + e2 − (b− e)2 is rational. Because quadrilateral ABCD is convex,
b and e are nonzero and have opposite sign. Hence b

e = 2be
2b2

is rational.



A (0, 0) C (c, 0)

B (a, b)

D (d, e)

P

We now calculate

P =
(

bd− ae

b− e
, 0

)
,

so

AP =
b
e · d− a

b
e − 1

is rational.

• Second approach

Note that, for an angle α, if cos α is rational, then sinα = rα
√

mα for some rational r and
square-free positive integer m (and this expression is unique when r is written in the lowest
term). We say two angles α and β with rational cosine are equivalent if mα = mβ, that is, if
sinα/ sinβ is rational. We establish the following lemma.

Lemma 2. Let α and β be two angles.

(a) If α, β and α + β all have rational cosines, then all three are equivalent.

(b) If α and β have rational cosine values and are equivalent, then α+β has rational cosine
value (and is equivalent to the other two).

(c) If α, β and γ are the angles of a triangle with rational sides, then all three have rational
cosine values and are equivalent.

Proof: Assume that cosα = s and cosβ = t.

(a) Assume that s and t are rational. By the Addition formula, we have

cos(α + β) = cos α cosβ − sinα sinβ, (∗)
or, sin α sinβ = st− cos(α + β), which is rational by the given conditions. Hence α and
β are equivalent. Thus sinα = ra

√
m and sinβ = rb

√
m for some rational numbers ra

and rb and some positive square free integer m. By the Addition formula, we have

sin(α + β) = sinα cosβ + cosα sinβ = (tra + srb)
√

m,

implying that α + β is equivalent to both α and β.

(b) By (∗), cos(α + β) is rational if s, t are rational and α and β are equivalent. Then by
(a), α, β, α + β are equivalent.

(c) Applying the Law of Cosine to triangle ABC shows that cosα, cos β and cos γ are all
rational. Note that cos γ = cos(180◦ − α − β) = − cos(α + β). The desired conclusions
follow from (a).
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We say a triangle rational if all its sides are rational. By Lemma 2 (c), all the angles in
a rational triangle have rational cosine values and are equivalent to each other. To prove
Lemma 1, we set ∠DAC = A1, ∠CAB = A2, ∠ABD = B1, ∠DBC = B2, ∠BCA = C1,
∠ACD = C2, ∠CDB = D1, ∠BDA = D2. Because triangles ABC, ABD, ADC are
rational, angles A2, A1 + A2, A1 all have rational cosine values. By Lemma 2 (a), A1 and
A2 are equivalent. Similarly, we can show that B1 and B2, C1 and C2, D1 and D2 are
equivalent. Because triangle ABC is rational, angles A2 and C1 are equivalent. There all
angles A1, A2, B1, . . . , D2 have rational cosine values and are equivalent.

Because angles A2 and B1 are equivalent, angle A2 +B1 has rational values and is equivalent
to A2 and B1. Thus, ∠APB = 180◦ − (A2 + B1) has rational cosine value and is equivalent
to A2 and B1. Apply the Law of Sine to triangle ABP gives

AB

sin∠APB
=

AP

sin∠B1
=

BP

sin∠A2
,

implying that both AP and BP have rational length. Similarly, we can show that both CP
and DP has rational length, proving Lemma 1.

• Third approach This approach applies the techniques used in the first approach into the
second approach. To prove Lemma 1, we set ∠DAP = A1 and ∠BAP = A2. Applying
the Law of Cosine to triangle ABC, ABC, ADC shows that angles A1, A2, A1 + A2 all has
rational cosine values. By the Addition formula, we have

sinA1 sinA2 = cosA1 cosA2 − cos(A1 + A2),

implying that sinA1 sinA2 is rational.

Thus,
sinA2

sinA1
=

sinA2 sinA1

sin2 A1
=

sinA2 sinA1

1− cos2 A1

is rational.

Note that the ratio between areas of triangle ADP and ABP is equal to PD
BP . Therefore,

BP

PD
=

[ABP ]
[ADP ]

=
1
2AB ·AP · sinA2

1
2AD ·AP · sinA1

=
AB

AD
· sinA2

sinA1
,

implying that PD
BP is rational. Because BP + PD = BD is rational, both BP and PD are

rational. Similarly, AP and PC are rational, proving Lemma 1.
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• Fourth approach This approach is based on the following lemma.

Lemma 3. Let ABC be a triangle, D be a point on side AC, φ1 = ∠DAB, φ2 = ∠DBA,
φ3 = ∠DBC, φ4 = ∠DCB, AB = c, BC = a, AD = x, and DC = y. If the numbers a, c,
and cosφi (1 ≤ i ≤ 4) are all rational, then numbers x and y are also rational.

A
C

B

D

Proof: Note that x + y = AC = c cosφ1 + a cosφ4 is rational. Hence x is rational if and
only if y is rational. Let BD = z. Projecting point D onto the lines AB and BC yields

{
x cosφ1 + z cosφ2 = c,
y cosφ4 + z cosφ3 = a,

or, denoting ci = cosφi for i = 1, 2, 3, 4,
{

c1x + c2z = c,
c4y + c3z = a.

Eliminating z, we get (c1c3)x − (c2c4)y = c3c − c2a, which is rational. Hence there exist
rational numbers, r1 and r2, such that

{
(c1c3)x− (c2c4)y = r1,
x + y = r2.

We consider two cases.

• In this case, we assume that the determinant of the above system, c1c3 + c2c4, is not
equal to 0, then this system has a unique solution (x, y) in rational numbers.

• In this case, we assume that the determinant c1c3 + c2c4 = 0, or

cosφ1 cosφ3 = − cosφ2 cosφ4.

Let’s denote θ = ∠BDC, then φ2 = θ − φ1 and φ3 = 180◦ − (θ + φ4). Then the above
equation becomes

cosφ1 cos(θ + φ4) = cosφ4 cos(θ − φ1).



by the Product-to-sum formulas, we have

cos(θ + φ1 + φ4) + cos(θ + φ4 − φ1) = cos(θ + φ4 − φ1) + cos(θ − φ1 − φ4),

or
cos(θ + φ1 + φ4) = cos(θ − φ1 − φ4).

It is possible only if [θ + φ1 + φ4] ± [θ − φ1 − φ4] = 360◦, that is, either θ = 180◦ or
φ1 + φ4 = 180◦, which is impossible because they are angles of triangles.

Thus, the determinant c1c3 + c2c4 is not equal to 0 and x and y are both rational numbers.

Now we are ready to prove Lemma 1. Applying the Law of Cosine to triangles ABC, ACD, ABD
shows that cos∠BAC, cos∠CAD, cos∠ABD, cos∠ADB are all rational. Applying Lemma
1 to triangle ABD shows that both of the segments BP and DP have rational lengths. In
exactly the same way, we can show that both of the segments AP and CP have rational
lengths.

Note: It’s interesting how easy it is to get a gap in the proof of the Lemma 1 by using the
core idea of the proof of Lemma 3. Here is an example.

Let us project the intersection point of the diagonals, O, onto the four lines of all sides of the
quadrilateral. We get the following 4× 4 system of linear equations:





cosφ1 x + cosφ2y = a,
cosφ3y + cosφ4z = b,
cosφ5z + cos φ6t = c,
cosφ7t + cosφ8x = d.

Using the Kramer’s Rule, we conclude that all x, y, z, and t must be rational numbers,
for all the corresponding determinants are rational. However, this logic works only if the
determinant of the system is different from 0.

Unfortunately, there are many geometric configurations for which the determinant of the
system vanishes (for example, this occurs for rectangles), and you cannot make a conclusion
of rationality of the segments x, y, z, and t. That’s why Lemma 2 plays the central role in
the solution to this problem.



3. Let n 6= 0. For every sequence of integers

A = a0, a1, a2, . . . , an

satisfying 0 ≤ ai ≤ i, for i = 0, . . . , n, define another sequence

t(A) = t(a0), t(a1), t(a2), . . . , t(an)

by setting t(ai) to be the number of terms in the sequence A that precede the term ai and are
different from ai. Show that, starting from any sequence A as above, fewer than n applications
of the transformation t lead to a sequence B such that t(B) = B.

Solution: Note first that the transformed sequence t(A) also satisfies the inequalities
0 ≤ t(ai) ≤ i, for i = 0, . . . , n. Call any integer sequence that satisfies these inequalities an
index bounded sequence.

We prove now that that ai ≤ t(ai), for i = 0, . . . , n. Indeed, this is clear if ai = 0. Otherwise,
let x = ai > 0 and y = t(ai). None of the first x consecutive terms a0, a1, . . . , ax−1 is greater
than x−1 so they are all different from x and precede x (see the diagram below). Thus y ≥ x,
that is, ai ≤ t(ai), for i = 0, . . . , n.

index 0 1 . . . x− 1 . . . i

A a0 a1 . . . ax−1 . . . x
t(A) t(a0) t(a1) . . . t(ax−1) . . . y

This already shows that the sequences stabilize after finitely many applications of the trans-
formation t, because the value of the index i term in index bounded sequences cannot exceed
i. Next we prove that if ai = t(ai), for some i = 0, . . . , n, then no further applications of t
will ever change the index i term. We consider two cases.

• In this case, we assume that ai = t(ai) = 0. This means that no term on the left of ai

is different from 0, that is, they are all 0. Therefore the first i terms in t(A) will also be
0 and this repeats (see the diagram below).

index 0 1 . . . i

A 0 0 . . . 0
t(A) 0 0 . . . 0

• In this case, we assume that ai = t(ai) = x > 0. The first x terms are all different
from x. Because t(ai) = x, the terms ax, ax+1, . . . , ai−1 must then all be equal to x.
Consequently, t(aj) = x for j = x, . . . , i− 1 and further applications of t cannot change
the index i term (see the diagram below).

index 0 1 . . . x− 1 x x + 1 . . . i

A a0 a1 . . . ax−1 x x . . . x
t(A) t(a0) t(a1) . . . t(ax−1) x x . . . x

For 0 ≤ i ≤ n, the index i entry satisfies the following properties: (i) it takes integer values;
(ii) it is bounded above by i; (iii) its value does not decrease under transformation t; and (iv)
once it stabilizes under transformation t, it never changes again. This shows that no more
than n applications of t lead to a sequence that is stable under the transformation t.



Finally, we need to show that no more than n− 1 applications of t is needed to obtain a fixed
sequence from an initial n + 1-term index bounded sequence A = (a0, a1, . . . , an). We induct
on n.

For n = 1, the two possible index bounded sequences (a0, a1) = (0, 0) and (a0, a1) = (0, 1)
are already fixed by t so we need zero applications of t.

Assume that any index bounded sequences (a0, a1, . . . , an) reach a fixed sequence after no more
than n − 1 applications of t. Consider an index bounded sequence A = (a0, a1, . . . , an+1).
It suffices to show that A will be stabilized in no more than n applications of t. We ap-
proach indirectly by assume on the contrary that n + 1 applications of transformations are
needed. This can happen only if an+1 = 0 and each application of t increased the index
n + 1 term by exactly 1. Under transformation t, the resulting value of index term i will not
the effected by index term j for i < j. Hence by the induction hypothesis, the subsequence
A′ = (a0, a1, . . . , an) will be stabilized in no more than n−1 applications of t. Because index n
term is stabilized at value x ≤ n after no more than min{x, n−1} applications of t and index
n + 1 term obtains value x after x exactly applications of t under our current assumptions.
We conclude that the index n+1 term would become equal to the index n term after no more
than n − 1 applications of t. However, once two consecutive terms in a sequence are equal
they stay equal and stabilize together. Because the index n term needs no more than n − 1
transformations to be stabilized, A can be stabilized in no more than n − 1 applications of
t, which contradicts our assumption of n + 1 applications needed. Thus our assumption was
wrong and we need at most n applications of transformation t to stabilize an (n + 1)-term
index bounded sequence. This completes our inductive proof.



4. Let ABC be a triangle. A circle passing through A and B intersects segments AC and BC
at D and E, respectively. Rays BA and ED intersect at F while lines BD and CF intersect
at M . Prove that MF = MC if and only if MB ·MD = MC2.

First Solution: Extend segment DM through M to G such that FG ‖ CD.

B

A

C

D

E

F

M

G

Then MF = MC if and only if quadrilateral CDFG is a parallelogram, or, FD ‖ CG. Hence
MC = MF if and only if ∠GCD = ∠FDA, that is, ∠FDA + ∠CGF = 180◦.

Because quadrilateral ABED is cyclic, ∠FDA = ∠ABE. It follows that MC = MF if and
only if

180◦ = ∠FDA + ∠CGF = ∠ABE + ∠CGF,

that is, quadrilateral CBFG is cyclic, which is equivalent to

∠CBM = ∠CBG = ∠CFG = ∠DCF = ∠DCM.

Because ∠DMC = ∠CMB, ∠CBM = ∠DCM if and only if triangles BCM and CDM are
similar, that is

CM

BM
=

DM

CM
,

or MB ·MD = MC2.

Second Solution:

We first assume that MB · MD = MC2. Because MC
MD = MB

MC and ∠CMD = ∠BMC,
triangles CMD and BMC are similar. Consequently, ∠MCD = ∠MBC.

Because quadrilateral ABED is cyclic, ∠DAE = ∠DBE. Hence

∠FCA = ∠MCD = ∠MBC = ∠DBE = ∠DAE = ∠CAE,



A

B

C

D

E
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M

implying that AE ‖ CF , so ∠AEF = ∠CFE. Because quadrilateral ABED is cyclic,
∠ABD = ∠AED. Hence

∠FBM = ∠ABD = ∠AED = ∠AEF = ∠CFE = ∠MFD.

Because ∠FBM = ∠DFM and ∠FMB = ∠DMF , triangles BFM and FDM are similar.
Consequently, FM

DM = BM
FM , or FM2 = BM · DM = CM2. Therefore MC2 = MB · MD

implies MC = MF .

Now we assume that MC = MF . Applying Ceva’s Theorem to triangle BCF and cevians
BM , CA, FE gives

BA

AF
· FM

MC
· CE

EB
= 1,

implying that BA
AF = BE

EC , so AE ‖ CF .

Consequently, ∠DCM = ∠DAE. Because quadrilateral ABED is cyclic, ∠DAE = ∠DBE.
Hence

∠DCM = ∠DAE = ∠DBE = ∠CBM.

Because ∠CBM = ∠DCM and ∠CMB = ∠DMC, triangles BCM and CDM are similar.
Consequently, CM

DM = BM
CM , or CM2 = BM ·DM .

Combining the above, we conclude that MF = MC if and only if MB ·MD = MC2.



5. Let a, b, c be positive real numbers. Prove that

(2a + b + c)2

2a2 + (b + c)2
+

(2b + c + a)2

2b2 + (c + a)2
+

(2c + a + b)2

2c2 + (a + b)2
≤ 8.

First Solution: By multiplying a, b, and c by a suitable factor, we reduce the problem to
the case when a + b + c = 3. The desired inequality reads

(a + 3)2

2a2 + (3− a)2
+

(b + 3)2

2b2 + (3− b)2
+

(c + 3)2

2c2 + (3− c)2
≤ 8.

Set

f(x) =
(x + 3)2

2x2 + (3− x)2

It suffices to prove that f(a) + f(b) + f(c) ≤ 8. Note that

f(x) =
x2 + 6x + 9

3(x2 − 2x + 3)
=

1
3
· x2 + 6x + 9
x2 − 2x + 3

=
1
3

(
1 +

8x + 6
x2 − 2x + 3

)
=

1
3

(
1 +

8x + 6
(x− 1)2 + 2

)

≤ 1
3

(
1 +

8x + 6
2

)
=

1
3
(4x + 4).

Hence,

f(a) + f(b) + f(c) ≤ 1
3
(4a + 4 + 4b + 4 + 4c + 4) = 8,

as desired.

Second Solution: Note that

(2x + y)2 + 2(x− y)2 = 4x2 + 4xy + y2 + 2x2 − 4xy + 2y2

= 3(2x2 + y2).

Setting x = a and y = b + c yields

(2a + b + c)2 + 2(a− b− c)2 = 3(2a2 + (b + c)2).

Thus, we have

(2a + b + c)2

2a2 + (b + c)2
=

3(2a2 + (b + c)2)− 2(a− b− c)2

2a2 + (b + c)2
= 3− 2(a− b− c)2

2a2 + (b + c)2
.

and its analogous forms. Thus, the desired inequality is equivalent to

(a− b− c)2

2a2 + (b + c)2
+

(b− a− c)2

2b2 + (c + a)2
+

(c− a− b)2

2c2 + (a + b)2
≥ 1

2
.

Because (b+ c)2 ≤ 2(b2 + c2), we have 2a2 +(b+ c)2 ≤ 2(a2 + b2 + c2) and its analogous forms.
It suffices to show that

(a− b− c)2

2(a2 + b2 + c2)
+

(b− a− c)2

2(a2 + b2 + c2)
+

(c− a− b)2

2(a2 + b2 + c2)
≥ 1

2
,



or,
(a− b− c)2 + (b− a− c)2 + (c− a− b)2 ≥ a2 + b2 + c2. (1)

Multiplying this out the left-hand side of the last inequality gives 3(a2+b2+c2)−2(ab+bc+ca).
Therefore the inequality (1) is equivalent to 2[a2 + b2 + c2 − (ab + bc + ca)] ≥ 0, which is
evident because

2[a2 + b2 + c2 − (ab + bc + ca)] = (a− b)2 + (b− c)2 + (c− a)2.

Equalities hold if (b + c)2 = 2(b2 + c2) and (c + a)2 = 2(c2 + a2), that is, a = b = c.

Third Solution: Given a function f of three variables, define the cyclic sum
∑
cyc

f(p, q, r) = f(p, q, r) + f(q, r, p) + f(r, p, q).

We first convert the inequality into

2a(a + 2b + 2c)
2a2 + (b + c)2

+
2b(b + 2c + 2a)
2b2 + (c + a)2

+
2c(c + 2a + 2b)
2c2 + (a + b)2

≤ 5.

Splitting the 5 among the three terms yields the equivalent form

∑
cyc

4a2 − 12a(b + c) + 5(b + c)2

3[2a2 + (b + c)2]
≥ 0. (2)

The numerator of the term shown factors as (2a−x)(2a−5x), where x = b+ c. We will show
that

(2a− x)(2a− 5x)
3(2a2 + x2)

≥ −4(2a− x)
3(a + x)

. (3)

Indeed, (3) is equivalent to

(2a− x)[(2a− 5x)(a + x) + 4(2a2 + x2)] ≥ 0,

which reduces to

(2a− x)(10a2 − 3ax− x2) = (2a− x)2(5a + x) ≥ 0,

evident. We proved that

4a2 − 12a(b + c) + 5(b + c)2

3[2a2 + (b + c)2]
≥ −4(2a− b− c)

3(a + b + c)
,

hence (2) follows. Equality holds if and only if 2a = b + c, 2b = c + a, 2c = a + b, i.e., when
a = b = c.

Fourth Solution: Given a function f of three variables, we define the symmetric sum
∑
sym

f(x1, . . . , xn) =
∑

σ

f(xσ(1), . . . , xσ(n))



where σ runs over all permutations of 1, . . . , n (for a total of n! terms). For example, if n = 3,
and we write x, y, z for x1, x2, x3,

∑
sym

x3 = 2x3 + 2y3 + 2z3

∑
sym

x2y = x2y + y2z + z2x + x2z + y2x + z2y

∑
sym

xyz = 6xyz.

We combine the terms in the desired inequality over a common denominator and use sym-
metric sum notation to simplify the algebra. The numerator of the difference between the
two sides is

∑
sym

8a6 + 8a5b + 2a4b2 + 10a4bc + 10a3b3 − 52a3b2c + 14a2b2c2.

Recalling Schur’s Inequality, we have

a3 + b3 + c3 + 3abc− (a2b + b2c + ca + ab2 + bc2 + ca2)
= a(a− b)(a− c) + b(b− a)(b− c) + c(c− a)(c− b) ≥ 0,

or ∑
sym

a3 − 2a2b + abc ≥ 0.

Hence,
0 ≤ 14abc

∑
sym

a3 − 2a2b + abc = 14
∑
sym

a4bc− 28a3b2c + 14a2b2c2

and by repeated AM-GM Inequality,

0 ≤
∑
sym

4a6 − 4a4bc

(because a46 + a6 + a6 + a6 + b6 + c6 ≥ 6a4bc and its analogous forms)

and
0 ≤

∑
sym

4a6 + 8a5b + 2a4b2 + 10a3b3 − 24a3b2c.

Adding these three inequalities yields the desired result.



6. At the vertices of a regular hexagon are written six nonnegative integers whose sum is 2003.
Bert is allowed to make moves of the following form: he may pick a vertex and replace the
number written there by the absolute value of the difference between the numbers written at
the two neighboring vertices. Prove that Bert can make a sequence of moves, after which the
number 0 appears at all six vertices.

Note: Let
A

B

F

C

E
D

denote a position, where A,B, C, D, E, F denote the numbers written on the vertices of the
hexagon. We write

A
B

F

C

E
D (mod 2)

if we consider the numbers written modulo 2.

Solution: Define the sum and maximum of a position to be the sum and maximum of the
six numbers at the vertices. We will show that from any position in which the sum is odd, it
is possible to reach the all-zero position.

Our strategy alternates between two steps:

(a) from a position with odd sum, move to a position with exactly one odd number;

(b) from a position with exactly one odd number, move to a position with odd sum and
strictly smaller maximum, or to the all-zero position.

Note that no move will ever increase the maximum, so this strategy is guaranteed to terminate,
because each step of type (b) decreases the maximum by at least one, and it can only terminate
at the all-zero position. It suffices to show how each step can be carried out.

First, consider a position

A
B

F

C

E
D

with odd sum. Then either A+C +E or B +D +F is odd; assume without loss of generality
that A + C + E is odd. If exactly one of A, C and E is odd, say A is odd, we can make the
sequence of moves

1
B

F

0
0

D → 1
1
1

0
0

0 → 0
1
1

0
0

0 → 0
1
0

0
0

0 (mod 2),

where a letter or number in boldface represents a move at that vertex, and moves that do
not affect each other have been written as a single move for brevity. Hence we can reach a
position with exactly one odd number. Similarly, if A, C, E are all odd, then the sequence
of moves

1
B

F

1
1

D → 1
0
0

1
1

0 → 1
0
0

0
0

0 (mod 2),

brings us to a position with exactly one odd number. Thus we have shown how to carry out
step (a).

Now assume that we have a position

A
B

F

C

E
D

with A odd and all other numbers even. We want to reach a position with smaller maximum.
Let M be the maximum. There are two cases, depending on the parity of M .



• In this case, M is even, so one of B, C, D, E, F is the maximum. In particular, A < M .
We claim after making moves at B, C, D, E, and F in that order, the sum is odd and
the maximum is less than M . Indeed, the following sequence

1
0
0

0
0

0 → 1
1
0

0
0

0 → 1
1
0

1
0

0 → 1
1
0

1
0

1 → 1
1
0

1
1

1 → 1
1
0

1
1

1 (mod 2).

shows how the numbers change in parity with each move. Call this new position

A′
B′

F ′
C ′

E′ D
′. The sum is odd, since there are five odd numbers. The numbers A′,

B′, C ′, D′, E′ are all less than M , since they are odd and M is even, and the maximum
can never increase. Also, F ′ = |A′ − E′| ≤ max{A′, E′} < M . So the maximum has
been decreased.

• In this case, M is odd, so M = A and the other numbers are all less than M .
If C > 0, then we make moves at B, F , A, and F , in that order. The sequence of
positions is

1
0
0

0
0

0 → 1
1
0

0
0

0 → 1
1
1

0
0

0 → 0
1
1

0
0

0 → 0
1
0

0
0

0 (mod 2).

Call this new position A′
B′

F ′
C ′

E′ D
′. The sum is odd, since there is exactly one odd

number. As before, the only way the maximum could not decrease is if B′ = A; but this
is impossible, since B′ = |A−C| < A because 0 < C < M = A. Hence we have reached
a position with odd sum and lower maximum.
If E > 0, then we apply a similar argument, interchanging B with F and C with E.
If C = E = 0, then we can reach the all-zero position by the following sequence of moves:

A
B

F

0
0

D → A
A

A

0
0

0 → 0
A

A

0
0

0 → 0
0
0

0
0

0.

(Here 0 represents zero, not any even number.)

Hence we have shown how to carry out a step of type (b), proving the desired result. The
problem statement follows since 2003 is odd.

Note: Observe that from positions of the form

0
1
1

1
1

0 (mod 2) or rotations

it is impossible to reach the all-zero position, because a move at any vertex leaves the same
value modulo 2. Dividing out the greatest common divisor of the six original numbers does
not affect whether we can reach the all-zero position, so we may assume that the numbers in
the original position are not all even. Then by a more complete analysis in step (a), one can
show from any position not of the above form, it is possible to reach a position with exactly
one odd number, and thus the all-zero position. This gives a complete characterization of
positions from which it is possible to reach the all-zero position.

There are many ways to carry out the case analysis in this problem; the one used here is fairly
economical. The important idea is the formulation of a strategy that decreases the maximum
value while avoiding the “bad” positions described above.



Second Solution: We will show that if there is a pair of opposite vertices with odd sum
(which of course is true if the sum of all the vertices is odd), then we can reduce to a position
of all zeros.

Focus on such a pair (a, d) with smallest possible max(a, d). We will show we can always
reduce this smallest maximum of a pair of opposite vertices with odd sum or reduce to the
all-zero position. Because the smallest maximum takes nonnegative integer values, we must
be able to achieve the all-zero position.

To see this assume without loss of generality that a ≥ d and consider an arc (a, x, y, d) of the
position

a
x

∗
y

∗ d

Consider updating x and y alternately, starting with x. If max(x, y) > a, then in at most
two updates we reduce max(x, y). Thus, we can repeat this alternate updating process and
we must eventually reach a point when max(x, y) ≤ a, and hence this will be true from then
on.

Under this alternate updating process, the arc of the hexagon will eventually enter an unique
cycle of length four modulo 2 in at most one update. Indeed, we have

1
0
∗

0
∗ 0 → 1

1
∗

0
∗ 0 → 1

1
∗

1
∗ 0 → 1

0
∗

1
∗ 0 → 1

0
∗

0
∗ 0 (mod 2)

and
1

0
∗

0
∗ 0 → 1

0
∗

0
∗ 0 (mod 2); 1

1
∗

0
∗ 0 → 1

1
∗

0
∗ 0 (mod 2)

1
1
∗

1
∗ 0 → 1

1
∗

1
∗ 0 (mod 2); 1

0
∗

1
∗ 0 → 1

0
∗

1
∗ 0 (mod 2),

or
0

0
∗

1
∗ 1 → 0

1
∗

1
∗ 1 → 0

1
∗

0
∗ 1 → 0

0
∗

0
∗ 1 → 0

0
∗

1
∗ 1 (mod 2)

and
0

0
∗

0
∗ 1 → 0

0
∗

0
∗ 1 (mod 2); 0

0
∗

1
∗ 1 → 0

0
∗

1
∗ 1 (mod 2)

0
1
∗

1
∗ 1 → 0

1
∗

0
∗ 1 (mod 2); 0

1
∗

0
∗ 1 → 0

1
∗

0
∗ 1 (mod 2).

Further note that each possible parity for x and y will occur equally often.

Applying this alternate updating process to both arcs (a, b, c, d) and (a, e, f, d) of

a
b

f

c

e
d,

we can make the other four entries be at most a and control their parity. Thus we can create
a position

a
x1

x5

x2

x4
d

with xi + xi+3 (i = 1, 2) odd and Mi = max(xi, xi+3) ≤ a. In fact, we can have m =
min(M1, M2) < a, as claimed, unless both arcs enter a cycle modulo 2 where the values
congruent to a modulo 2 are always exactly a. More precisely, because the sum of xi and xi+3

is odd, one of them is not congruent to a and so has its value strictly less than a. Thus both



arcs must pass through the state (a, a, a, d) (modulo 2, this is either (0, 0, 0, 1) or (1, 1, 1, 0))
in a cycle of length four. It is easy to check that for this to happen, d = 0. Therefore, we can
achieve the position

a
a

a

a

a
0.

From this position, the sequence of moves

a
a

a

a

a
0 → a

0
0

a

a
0 → 0

0
0

0
0

0

completes the task.
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§0 Problems

1. Prove that for every positive integer n there exists an n-digit number divisible by
5n all of whose digits are odd.

2. A convex polygon P in the plane is dissected into smaller convex polygons by
drawing all of its diagonals. The lengths of all sides and all diagonals of the polygon
P are rational numbers. Prove that the lengths of all sides of all polygons in the
dissection are also rational numbers.

3. Let n be a positive integer. For every sequence of integers

A = (a0, a1, a2, . . . , an)

satisfying 0 ≤ ai ≤ i, for i = 0, . . . , n, we define another sequence

t(A) = (t(a0), t(a1), t(a2), . . . , t(an))

by setting t(ai) to be the number of terms in the sequence A that precede the term
ai and are different from ai. Show that, starting from any sequence A as above,
fewer than n applications of the transformation t lead to a sequence B such that
t(B) = B.

4. Let ABC be a triangle. A circle passing through A and B intersects segments AC
and BC at D and E, respectively. Lines AB and DE intersect at F , while lines BD
and CF intersect at M . Prove that MF = MC if and only if MB ·MD = MC2.

5. Let a, b, c be positive real numbers. Prove that

(2a + b + c)2

2a2 + (b + c)2
+

(2b + c + a)2

2b2 + (c + a)2
+

(2c + a + b)2

2c2 + (a + b)2
≤ 8.

6. At the vertices of a regular hexagon are written six nonnegative integers whose sum
is 20032003. Bert is allowed to make moves of the following form: he may pick a
vertex and replace the number written there by the absolute value of the difference
between the numbers written at the two neighboring vertices. Prove that Bert can
make a sequence of moves, after which the number 0 appears at all six vertices.

2
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§1 USAMO 2003/1, proposed by Titu Andreescu

Prove that for every positive integer n there exists an n-digit number divisible by 5n all of whose

digits are odd.

This is immediate by induction on n. For n = 1 we take 5; moving forward if M is a
working n-digit number then exactly one of

N1 = 10n + M

N3 = 3 · 10n + M

N5 = 5 · 10n + M

N7 = 7 · 10n + M

N9 = 9 · 10n + M

is divisible by 5n+1; as they are all divisible by 5n and Nk/5n are all distinct.

3
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§2 USAMO 2003/2

A convex polygon P in the plane is dissected into smaller convex polygons by drawing all of its

diagonals. The lengths of all sides and all diagonals of the polygon P are rational numbers. Prove

that the lengths of all sides of all polygons in the dissection are also rational numbers.

Suppose AB is a side of a polygon in the dissection, lying on diagonal XY , with X, A,
B, Y in that order. Then

AB = XY −XA− Y B.

In this way, we see that it actually just suffices to prove the result for a quadrilateral.
To do this, we apply barycentric coordinates. Consider quadrilateral ABDC, with

A = (1, 0, 0), B = (0, 1, 0), C = (0, 0, 1). Let D = (x, y, z), with x + y + z = 1. By
hypothesis, each of the numbers

−a2yz + b2(1− x)z + c2(1− x)y = AD2

a2(1− y)z + b2zx + c2(1− y)x = BD2

−a2(1− z)y − b2(1− z)x + c2xy = CD2

is rational. Let W = a2yz + b2zx + c2xy. Then,

b2z + c2y = AD2 + W

a2z + c2x = BD2 + W

a2y + b2x = CD2 + W.

This implies that AD2+BD2+2W−c2 = 2SCz and cyclically (as usual 2SC = a2+b2−c2).
If any of SA, SB, SC are zero, then we deduce W is rational. Otherwise, we have that

1 = x + y + z =
∑
cyc

AD2 + BD2 + 2W − c2

2SC

which implies that W is rational, because it appears with coefficient 1
SA

+ 1
SB

+ 1
SC
6= 0

(since SBC + SCA + SAB is actually the area of ABC).
Hence from the rationality of W , we deduce that x is rational as long as SA 6= 0, and

similarly for the others. So at most one of x, y, z is irrational, but since x + y + z = 1
this implies they are all rational.

Finally, if P = AD ∩ BC then AP = 1
y+zAD, so AP is rational too, completing the

proof.
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§3 USAMO 2003/3

Let n be a positive integer. For every sequence of integers

A = (a0, a1, a2, . . . , an)

satisfying 0 ≤ ai ≤ i, for i = 0, . . . , n, we define another sequence

t(A) = (t(a0), t(a1), t(a2), . . . , t(an))

by setting t(ai) to be the number of terms in the sequence A that precede the term ai and are

different from ai. Show that, starting from any sequence A as above, fewer than n applications of

the transformation t lead to a sequence B such that t(B) = B.

We go by strong induction on n with the base cases n = 1 and n = 2 done by hand.
Consider two cases:

• If a0 = 0 and a1 = 1, then 1 ≤ t(ai) ≤ i for i ≥ 1; now apply induction to

(t(a1)− 1, t(a2)− 1, . . . , t(an)− 1) .

• Otherwise, assume that a0 = a1 = · · · = ak−1 = 0 but ak 6= 0, where k ≥ 2. Assume
k < n or it’s obvious. Then t(ai) 6= 0 for i ≥ k, thus t(t(ai)) ≥ k for i ≥ k, and we
can apply induction hypothesis to

(t(t(ak))− k, . . . , t(t(an))− k) .
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§4 USAMO 2003/4, proposed by Titu Andreescu and Zuming
Feng

Let ABC be a triangle. A circle passing through A and B intersects segments AC and BC at D

and E, respectively. Lines AB and DE intersect at F , while lines BD and CF intersect at M .

Prove that MF = MC if and only if MB ·MD = MC2.

Ceva theorem plus the similar triangles.

CD

M

F

B

E

A

We know unconditionally that

]CBD = ]EBD = ]EAD = ]EAC.

Moreover, by Ceva’s theorem on 4BCF , we have MF = MC ⇐⇒ FC ‖ AE. So we
have the equivalences

MF = MC ⇐⇒ FC ‖ AE
⇐⇒ ]FCA = ]EAC

⇐⇒ ]MCD = ]CBD

⇐⇒ MC2 = MB ·MD.

6
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§5 USAMO 2003/5, proposed by Zuming Feng and Titu
Andreescu

Let a, b, c be positive real numbers. Prove that

(2a + b + c)2

2a2 + (b + c)2
+

(2b + c + a)2

2b2 + (c + a)2
+

(2c + a + b)2

2c2 + (a + b)2
≤ 8.

This is a canonical example of tangent line trick. Homogenize so that a + b + c = 3.
The desired inequality reads ∑

cyc

(a + 3)2

2a2 + (3− a)2
≤ 8.

This follows from

f(x) =
(x + 3)2

2x2 + (3− x)2
≤ 1

3
(4x + 4)

which can be checked as 1
3(4x + 4)(2x2 + (3− x)2)− (x + 3)2 = (x− 1)2(4x + 3) ≥ 0.

7

http://web.evanchen.cc


USAMO 2003 Solution Notes web.evanchen.cc, updated April 17, 2020

§6 USAMO 2003/6

At the vertices of a regular hexagon are written six nonnegative integers whose sum is 20032003.

Bert is allowed to make moves of the following form: he may pick a vertex and replace the number

written there by the absolute value of the difference between the numbers written at the two

neighboring vertices. Prove that Bert can make a sequence of moves, after which the number 0

appears at all six vertices.

If a ≤ b ≤ c are odd integers, the configuration which has (a, b − a, b, c − b, c, c − a)
around the hexagon in some order (up to cyclic permutation and reflection) is said to be
great (picture below).

Claim — We can reach a great configuration from any configuration with odd sum.

Proof. We should be able to find an equilateral triangle whose vertices have odd sum.
If all three vertices are odd, then we are already done. Otherwise, operate as in the
following picture (modulo 2).

1

∗

0

∗
0

∗

1

1

0

0

0

1

1

1

1

0

1

1

1

0

1

0

1

0

Thus we arrived at a great configuration.

Claim — Bert’s goal is possible for all great configurations.

Proof. If a = b = c then we have (t, 0, t, 0, t, 0) which is obviously winnable.
Otherwise, perform six moves as shown in the diagram to reach a new great configuration

whose odd entries are b, |c− 2a|, ||c− 2b| − (c− a)| (and perform three more moves to
get the even numbers). The idea is to show the largest odd entry has decreased.

a

b− a

b

c− b

c

c− a

c− b

b− a

b

c− b

b− a

c− a

c− b

|c− 2b|

b

a

b− a

c− a

||c− 2b| − (c− a)|

|c− 2b|

b

a

|c− 2a|

c− a

||c− 2b| − (c− a)|

b |c− 2a|
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This is annoying, but straightforward. Our standing assumption is a 6= c (but possibly
b = c). It’s already obvious that |c − 2a| < c, so focus on the last term. If c > 2b,
then |(c− 2b)− (c− a)| = |2b− a| < c as well for a 6= c. When c ≤ 2b we instead
have |(2b− c)− (c− a)| ≤ max (2b− c, c− a) with equality if and only if c− a = 0; but
2b− c ≤ c as needed. Thus, in all situations we have

c 6= a =⇒ max (||c− 2b| − (c− a)| , |c− 2a|) < c.

Now denote the new odd entries by a′ ≤ b′ ≤ c′ (in some order). If b < c then c′ < c,
while if b = c then c′ = b but b′ < c = b. Thus (c′, b′, a′) precedes (c, b, a) lexicographically,
and we can induct down.

Remark. One simple idea might be to try to overwrite the maximum number at each point,
decreasing the sum. However, this fails on the arrangement (t, t, 0, t, t, 0).

Unfortunately, this issue is actually fatal, as the problem has a hidden parity obstruction.
The configuration (1, 1, 0, 1, 1, 0) mod 2 is invariant modulo 2, and so Bert can walk into a
“fatal death-trap” of this shape long before the numbers start becoming equal/zero/etc. In
other words, you can mess up on the first move! This is why the initial sum is given to be
odd; however, it’s not possible for Bert to win so one essentially has to “tip-toe” around the
110110 trap any time one leaves the space of odd sum. That’s why the great configurations
defined above serve as an anchor, making sure we never veer too far from the safe 101010
configuration.

Remark. On the other hand, many other approaches are possible which anchor around a
different parity configuration, like 100000 for example. The choice of 101010 by me is due
to symmetry — ostensibly, if it worked, there should be fewer cases.
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33rd United States of America Mathematical Olympiad

Day I 12:30 PM – 5 PM EDT

April 27, 2004

1. Let ABCD be a quadrilateral circumscribed about a circle, whose interior and exterior
angles are at least 60◦. Prove that

1

3
|AB3 − AD3| ≤ |BC3 − CD3| ≤ 3|AB3 − AD3|.

When does equality hold?

2. Suppose a1, . . . , an are integers whose greatest common divisor is 1. Let S be a set of
integers with the following properties.

(a) For i = 1, . . . , n, ai ∈ S.

(b) For i, j = 1, . . . , n (not necessarily distinct), ai − aj ∈ S.

(c) For any integers x, y ∈ S, if x + y ∈ S, then x− y ∈ S.

Prove that S must be equal to the set of all integers.

3. For what real values of k > 0 is it possible to dissect a 1 × k rectangle into two similar,
but noncongruent, polygons?

Copyright c© Committee on the American Mathematics Competitions,
Mathematical Association of America



33rd United States of America Mathematical Olympiad

Day II 12:30 PM – 5 PM EDT

April 28, 2004

4. Alice and Bob play a game on a 6 by 6 grid. On his or her turn, a player chooses a rational
number not yet appearing in the grid and writes it in an empty square of the grid. Alice
goes first and then the players alternate. When all squares have numbers written in them,
in each row, the square with the greatest number in that row is colored black. Alice wins
if she can then draw a line from the top of the grid to the bottom of the grid that stays
in black squares, and Bob wins if she can’t. (If two squares share a vertex, Alice can draw
a line from one to the other that stays in those two squares.) Find, with proof, a winning
strategy for one of the players.

5. Let a, b and c be positive real numbers. Prove that

(a5 − a2 + 3)(b5 − b2 + 3)(c5 − c2 + 3) ≥ (a + b + c)3.

6. A circle ω is inscribed in a quadrilateral ABCD. Let I be the center of ω. Suppose that

(AI + DI)2 + (BI + CI)2 = (AB + CD)2.

Prove that ABCD is an isosceles trapezoid.

Copyright c© Committee on the American Mathematics Competitions,
Mathematical Association of America



33rd United States of America Mathematical Olympiad

1. Let ABCD be a quadrilateral circumscribed about a circle, whose interior and exterior
angles are at least 60◦. Prove that

1

3
|AB3 − AD3| ≤ |BC3 − CD3| ≤ 3|AB3 − AD3|.

When does equality hold?

Solution: By symmetry, we only need to prove the first inequality.

Because quadrilateral ABCD has an incircle, we have AB + CD = BC + AD, or AB −
AD = BC − CD. It suffices to prove that

1

3
(AB2 + AB · AD + AD2) ≤ BC2 + BC · CD + CD2.

By the given condition, 60◦ ≤ ∠A, ∠C ≤ 120◦, and so 1

2
≥ cos A, cos C ≥ − 1

2
. Applying

the law of cosines to triangle ABD yields

BD2 = AB2 − 2AB · AD cos A + AD2 ≥ AB2 − AB · AD + AD2

≥
1

3
(AB2 + AB · AD + AD2).

The last inequality is equivalent to the inequality 3AB2 − 3AB · AD + 3AD2 ≥ AB2 +
AB ·AD +AD2, or AB2 −2AB ·AD +AD2 ≥ 0, which is evident. The last equality holds
if and only if AB = AD.

On the other hand, applying the Law of Cosines to triangle BCD yields

BD2 = BC2 − 2BC · CD cos C + CD2 ≤ BC2 + BC · CD + CD2.

Combining the last two inequalities gives the desired result.

For the given inequalities to hold, we must have AB = AD. This condition is also sufficient,
because all the entries in the equalities are 0. Thus, the given inequalities hold if and only
if ABCD is a kite with AB = AD and BC = CD.

Problem originally by Titu Andreescu.

2. Suppose a1, . . . , an are integers whose greatest common divisor is 1. Let S be a set of
integers with the following properties.

(a) For i = 1, . . . , n, ai ∈ S.

(b) For i, j = 1, . . . , n (not necessarily distinct), ai − aj ∈ S.

(c) For any integers x, y ∈ S, if x + y ∈ S, then x − y ∈ S.



Prove that S must be equal to the set of all integers.

Solution: We may as well assume that none of the ai is equal to 0. We start with the
following observations.

(d) 0 = a1 − a1 ∈ S by (b).

(e) −s = 0 − s ∈ S whenever s ∈ S, by (a) and (d).

(f) If x, y ∈ S and x − y ∈ S, then x + y ∈ S by (b) and (e).

By (f) plus strong induction on m, we have that ms ∈ S for any m ≥ 0 whenever s ∈ S.
By (d) and (e), the same holds even if m ≤ 0, and so we have the following.

(g) For i = 1, . . . , n, S contains all multiples of ai.

We next verify that

(h) For i, j ∈ {1, . . . , n} and any integers ci, cj, ciai + cjaj ∈ S.

We do this by induction on |ci| + |cj|. If |ci| ≤ 1 and |cj| ≤ 1, this follows from (b), (d),
(f), so we may assume that max{|ci|, |cj|} ≥ 2. Suppose without loss of generality (by
switching i with j and/or negating both ci and cj) that ci ≥ 2; then

ciai + cjaj = ai + ((ci − 1)ai + cjaj)

and we have ai ∈ S, (ci−1)ai+cjaj ∈ S by the induction hypothesis, and (ci−2)ai+cjaj ∈
S again by the induction hypothesis. So ciai + cjaj ∈ S by (f), and (h) is verified.

Let ei be the largest integer such that 2ei divides ai; without loss of generality we may
assume that e1 ≥ e2 ≥ · · · ≥ en. Let di be the greatest common divisor of a1, . . . , ai. We
prove by induction on i that S contains all multiples of di for i = 1, . . . , n; the case i = n
is the desired result. Our base cases are i = 1 and i = 2, which follow from (g) and (h),
respectively.

Assume that S contains all multiples of di, for some 2 ≤ i < n. Let T be the set of integers
m such that m is divisible by di and m + rai+1 ∈ S for all integers r. Then T contains
nonzero positive and negative numbers, namely any multiple of ai by (h). By (c), if t ∈ T
and s divisible by di (so in S) satisfy t − s ∈ T , then t + s ∈ T . By taking t = s = di,
we deduce that 2di ∈ T ; by induction (as in the proof of (g)), we have 2mdi ∈ T for any
integer m (positive, negative or zero).

From the way we ordered the ai, we see that the highest power of 2 dividing di is greater
than or equal to the highest power of 2 dividing ai+1. In other words, ai+1/di+1 is odd.
We can thus find integers f, g with f even such that fdi + gai+1 = di+1. (Choose such
a pair without any restriction on f , and replace (f, g) with (f − ai+1/di+1, g + di/di+1) if
needed to get an even f .) Then for any integer r, we have rfdi ∈ T and so rdi+1 ∈ S.
This completes the induction and the proof of the desired result.

Problem originally by Kiran Kedlaya.



3. For what real values of k > 0 is it possible to dissect a 1 × k rectangle into two similar,
but noncongruent, polygons?

Solution: We will show that a dissection satisfying the requirements of the problems is
possible if and only if k 6= 1.

We first show by contradiction that such a dissection is not possible when k = 1. Assume
that we have such a dissection. The common boundary of the two dissecting polygons must
be a single broken line connecting two points on the boundary of the square (otherwise
either the square is subdivided in more than two pieces or one of the polygons is inside
the other). The two dissecting polygons must have the same number of vertices. They
share all the vertices on the common boundary, so they have to use the same number of
corners of the square as their own vertices. Therefore, the common boundary must connect
two opposite sides of the square (otherwise one of the polygons will contain at least three
corners of the square, while the other at most two). However, this means that each of the
dissecting polygons must use an entire side of the square as one of its sides, and thus each
polygon has a side of length 1. A side of longest length in one of the polygons is either a
side on the common boundary or, if all those sides have length less than 1, it is a side of
the square. But this is also true of the other polygon, which means that the longest side
length in the two polygons is the same. This is impossible since they are similar but not
congruent, so we have a contradiction.

We now construct a dissection satisfying the requirements of the problem when k 6= 1.
Notice that we may assume that k > 1, because a 1 × k rectangle is similar to a 1 × 1

k

rectangle.

We first construct a dissection of an appropriately chosen rectangle (denoted by ABCD
below) into two similar noncongruent polygons. The construction depends on two pa-
rameters (n and r below). By appropriate choice of these parameters we show that the
constructed rectangle can be made similar to a 1 × k rectangle, for any k > 1. The
construction follows.

Let r > 1 be a real number. For any positive integer n, consider the following sequence of
2n + 2 points:

A0 = (0, 0), A1 = (1, 0), A2 = (1, r), A3 = (1 + r2, r),

A4 = (1 + r2, r + r3), A5 = (1 + r2 + r4, r + r3),

and so on, until

A2n+1 = (1 + r2 + r4 + · · · + r2n, r + r3 + r5 + · · · + r2n−1).

Define a rectangle ABCD by

A = A0, B = (1 + r2 + · · ·+ r2n, 0), C = A2n+1, and D = (0, r + r3 + ... + r2n−1).

The sides of the (2n + 2)-gon A1A2 . . . A2n+1B have lengths

r, r2, r3, . . . , r2n, r + r3 + r5 + · · ·+ r2n−1, r2 + r4 + r6 + · · · + r2n,



and the sides of the (2n + 2)-gon A0A1A2 . . . A2nD have lengths

1, r, r2, . . . , r2n−1, 1 + r2 + r4 + · · ·+ r2n−2, r + r3 + r5 + · · · + r2n−1,

respectively. These two polygons dissect the rectangle ABCD and, apart from orientation,
it is clear that they are similar but noncongruent, with coefficient of similarity r > 1. The
rectangle ABCD and its dissection are thus constructed.

The rectangle ABCD is similar to a rectangle of size 1 × fn(r), where

fn(r) =
1 + r2 + ... + r2n

r + r3 + ... + r2n−1
.

It remains to show that fn(r) can have any value k > 1 for appropriate choices of n and
r. Choose n sufficiently large so that 1 + 1

n
< k. Since

fn(1) = 1 +
1

n
< k < k

1 + k2 + ... + k2n

k2 + k4 + ... + k2n
= fn(k)

and fn(r) is a continuous function for positive r, there exists an r such that 1 < r < k
and fn(r) = k, so we are done.

Problem originally by Ricky Liu.

4. Alice and Bob play a game on a 6 by 6 grid. On his or her turn, a player chooses a rational
number not yet appearing in the grid and writes it in an empty square of the grid. Alice
goes first and then the players alternate. When all squares have numbers written in them,
in each row, the square with the greatest number in that row is colored black. Alice wins
if she can then draw a line from the top of the grid to the bottom of the grid that stays
in black squares, and Bob wins if she can’t. (If two squares share a vertex, Alice can draw
a line from one to the other that stays in those two squares.) Find, with proof, a winning
strategy for one of the players.

Solution: Bob can win as follows.

Claim 1. After each of his moves, Bob can insure that in that maximum number in each

row is a square in A ∪ B, where

A = {(1, 1), (2, 1), (3, 1), (1, 2), (2, 2), (3, 2), (1, 3), (2, 3)}

and

B = {(5, 3), (4, 4), (5, 4), (6, 4), (4, 5), (5, 5), (6, 5), (4, 6), (5, 6), (6, 6)}.

Proof. Bob pairs each square of A∪B with a square in the same row that is not in A∪B,
so that each square of the grid is in exactly one pair. Whenever Alice plays in one square
of a pair, Bob will play in the other square of the pair on his next turn. If Alice moves
with x in A ∪B, Bob writes y with y < x in the paired square. If Alice moves with x not
in A ∪ B, Bob writes z with z > x in the paired square in A∪B. So after Bob’s turn, the
maximum of each pair is in A ∪ B, and thus the maximum of each row is in A ∪ B.



So when all the numbers are written, the maximum square in row 6 is in B and the
maximum square in row 1 is in A. Since there is no path from B to A that stays in A∪B,
Bob wins.

Problem originally by Melanie Wood.

5. Let a, b and c be positive real numbers. Prove that

(a5 − a2 + 3)(b5 − b2 + 3)(c5 − c2 + 3) ≥ (a + b + c)3.

Solution: For any positive number x, the quantities x2−1 and x3−1 have the same sign.
Thus, we have 0 ≤ (x3 − 1)(x2 − 1) = x5 − x3 − x2 + 1, or

x5 − x2 + 3 ≥ x3 + 2.

It follows that

(a5 − a2 + 3)(b5 − b2 + 3)(c5 − c2 + 3) ≥ (a3 + 2)(b3 + 2)(c3 + 2).

It suffices to show that

(a3 + 2)(b3 + 2)(c3 + 2) ≥ (a + b + c)3. (∗)

We finish with two approaches.

• First approach Expanding both sides of inequality (∗) and cancelling like terms gives

a3b3c3+3(a3+b3+c3)+2(a3b3+b3c3+c3a3)+8 ≥ 3(a2b+b2a+b2c+c2b+c2a+ac2)+6abc.
(∗′)

By the AM-GM Inequality, we have a3 + a3b3 + 1 ≥ 3a2b. Combining similar results,
inequality (∗) reduces to

a3b3c3 + a3 + b3 + c3 + 1 + 1 ≥ 6abc,

which is evident by the AM-GM Inequality.

• We rewrite the left-hand-side of inequality (∗) as

(a3 + 1 + 1)(1 + b3 + 1)(1 + 1 + c3).

By Hölder’s Inequality, we have

(a3 + 1 + 1)
1

3 (1 + b3 + 1)
1

3 (1 + 1 + c3)
1

3 ≥ (a + b + c),

from which inequality (∗) follows.

Problem originally by Titu Andreescu.



6. A circle ω is inscribed in a quadrilateral ABCD. Let I be the center of ω. Suppose that

(AI + DI)2 + (BI + CI)2 = (AB + CD)2.

Prove that ABCD is an isosceles trapezoid.

Solution: Our proof is based on the following key Lemma.

Lemma If a circle ω, centered at I, is inscribed in a quadrilateral ABCD, then

BI2 +
AI

DI
· BI · CI = AB · BC. (∗)

B C

A

I

D

P

aa

b

b
c

c

d

d

b

c

c

da

d

Proof: Since circle ω is inscribed in ABCD, we get m∠DAI = m∠IAB = a, m∠ABI =
m∠IBC = b, m∠BCI = m∠ICD = c, m∠CDI = m∠IDA = d, and a+ b+ c+d = 180◦.
Construct a point P outside of the quadrilateral such that 4ABP is similar to 4DCI.
We obtain

m∠PAI + m∠PBI = m∠PAB + m∠BAI + m∠PBA + m∠ABI

= m∠IDC + a + m∠ICD + b

= a + b + c + d = 180◦,

implying that the quadrilateral PAIB is cyclic. By Ptolemy’s Theorem, we have AI ·
BP + BI · AP = AB · IP , or

BP ·
AI

IP
+ BI ·

AP

IP
= AB. (†)

Because PAIB is cyclic, it is not difficult to see that, as indicated in the figure, m∠IPB =
m∠IAB = a, m∠API = m∠ABI = b, m∠AIP = m∠ABP = c, and m∠PIB =
m∠PAB = d. Note that 4AIP and 4ICB are similar, implying that

AI

IP
=

IC

CB
and

AP

IP
=

IB

CB
.

Substituting the above equalities into the identity (†), we arrive at

BP ·
CI

BC
+

BI2

BC
= AB,



or
BP · CI + BI2 = AB · BC. (†′)

Note also that 4BIP and 4IDA are similar, implying that
BP

BI
=

IA

ID
, or

BP =
AI

ID
· IB.

Substituting the above identity back into (†′) gives the desired relation (∗), establishing
the Lemma.

Now we prove our main result. By the Lemma and symmetry, we have

CI2 +
DI

AI
· BI · CI = CD · BC. (∗′)

Adding the two identities (∗) and (∗′) gives

BI2 + CI2 +

(

AI

DI
+

DI

AI

)

BI · CI = BC(AB + CD).

By the AM-GM Inequality, we have
AI

DI
+

DI

AI
≥ 2. Thus,

BC(AB + CD) ≥ IB2 + IC2 + 2IB · IC = (BI + CI)2,

where the equality holds if and only if AI = DI. Likewise, we have

AD(AB + CD) ≥ (AI + DI)2,

where the equality holds if and only if BI = CI. Adding the last two identities gives

(AI + DI)2 + (BI + CI)2 ≤ (AD + BC)(AB + CD) = (AB + CD)2,

because AD+BC = AB+CD. (The latter equality is true because the circle ω is inscribed
in the quadrilateral ABCD.)

By the given condition in the problem, all the equalities in the above discussion must
hold, that is, AI = DI and BI = CI. Consequently, we have a = d, b = c, and so
∠DAB + ∠ABC = 2a + 2b = 180◦, implying that AD ‖ BC. It is not difficult to see that
4AIB and 4DIC are congruent, implying that AB = CD. Thus, ABCD is an isosceles
trapezoid.

Problem originally by Zuming Feng.
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§0 Problems

1. Let ABCD be a quadrilateral circumscribed about a circle, whose interior and
exterior angles are at least 60 degrees. Prove that

1

3
|AB3 −AD3| ≤ |BC3 − CD3| ≤ 3|AB3 −AD3|.

When does equality hold?

2. Let a1, a2, . . . , an be integers whose greatest common divisor is 1. Let S be a set
of integers with the following properties:

(a) ai ∈ S for i = 1, . . . , n.

(b) ai − aj ∈ S for i, j = 1, . . . , n, not necessarily distinct.

(c) If x, y ∈ S and x + y ∈ S, then x− y ∈ S too.

Prove that S = Z.

3. For what real values of k > 0 is it possible to dissect a 1 × k rectangle into two
similar but noncongruent polygons?

4. Alice and Bob play a game on a 6 by 6 grid. On his turn, a player chooses a rational
number not yet appearing in the grid and writes it in an empty square of the grid.
Alice goes first and then the players alternate. When all squares have numbers
written in them, in each row, the square with the greatest number in that row is
colored black. Alice wins if he can then draw a line from the top of the grid to the
bottom of the grid that stays in black squares, and Bob wins if he can’t. (If two
squares share a vertex, Alice can draw a line from one to the other that stays in
those two squares.) Find, with proof, a winning strategy for one of the players.

5. Let a, b, c be positive reals. Prove that

(a5 − a2 + 3)(b5 − b2 + 3)(c5 − c2 + 3) ≥ (a + b + c)3 .

6. A circle ω is inscribed in a quadrilateral ABCD. Let I be the center of ω. Suppose
that

(AI + DI)2 + (BI + CI)2 = (AB + CD)2.

Prove that ABCD is an isosceles trapezoid.

2
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§1 USAMO 2004/1, proposed by Titu Andreescu

Let ABCD be a quadrilateral circumscribed about a circle, whose interior and exterior angles
are at least 60 degrees. Prove that

1

3
|AB3 −AD3| ≤ |BC3 − CD3| ≤ 3|AB3 −AD3|.

When does equality hold?

Clearly it suffices to show the left inequality. Since AB + CD = BC + AD =⇒
|AB −AD| = |BC − CD|, it suffices to prove

1

3
(AB2 + AB ·AD + AD2) ≤ BC2 + BC · CD + CD2.

This follows by noting that

BC2 + BC · CD + CD2 ≥ BC2 + CD2 − 2(BC)(CD) cos(∠BCD)

= BD2

= AB2 + AD2 − 2(AB)(AD) cos(∠BAD)

≥ AB2 + AD2 −AB ·AD
≥ 1

3(AB2 + AD2 + AB ·AD)

the last line following by AM-GM.
The equality holds iff ABCD is a cite with AB = AD, CB = CD.
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§2 USAMO 2004/2, proposed by Kiran Kedlaya

Let a1, a2, . . . , an be integers whose greatest common divisor is 1. Let S be a set of integers
with the following properties:

(a) ai ∈ S for i = 1, . . . , n.

(b) ai − aj ∈ S for i, j = 1, . . . , n, not necessarily distinct.

(c) If x, y ∈ S and x + y ∈ S, then x− y ∈ S too.

Prove that S = Z.

The idea is to show any linear combination of the ai are in S, which implies (by Bezout)
that S = Z. This is pretty intuitive, but the details require some care (in particular there
is a parity obstruction at the second lemma).

First, we make the following simple observations:

• 0 ∈ S, by putting i = j = 1 in (b).

• s ∈ S ⇐⇒ −s ∈ S, by putting x = 0 in (c).

Now, we prove that:

Lemma

For any integers c, d, and indices i, j, we have cai + daj ∈ S.

Proof. We will assume c, d > 0 since the other cases are anologous. In that case it
follows by induction on c + d for example cai + (d − 1)aj , aj , cai + daj in S implies
cai + (d + 1)aj ∈ S.

Lemma

For any nonzero integers c1, c2, . . . , cm, and any distinct indices {i1, i2, . . . , im}, we
have ∑

k

ckaik ∈ S.

Proof. By induction on m, with base case m ≤ 2 already done.
For the inductive step, we will assume that i1 = 1, i2 = 2, et cetera, for notational

convenience. The proof is then split into two cases.
First Case: some ci is even. WLOG c1 6= 0 is even and note that

x
def
=

1

2
c1a1 +

∑
k≥3

ckak ∈ S

y
def
= −1

2
c1a1 − c2a2 ∈ S

x + y = −c2a2 +
∑
k≥3

ckak ∈ S

=⇒ x− y =
∑
k≥1

ckak ∈ S.

4

http://web.evanchen.cc


USAMO 2004 Solution Notes web.evanchen.cc, updated April 17, 2020

Second Case: all ci are odd. We reduce this to the first case as follows. Let u = a1
gcd(a1,a2)

and v = a2
gcd(a1,a2)

. Then gcd(u, v) = 1 and so WLOG u is odd. Then

c1a1 + c2a2 = (c1 + v)a1 + (c2 − u)a2

and so we can replace our given combination by (c1 + v)a1 + (c2−u)a2 + c3a3 + . . . which
now has an even coefficient for a2.

We then apply the lemma at m = n; this implies the result since Bezout’s lemma
implies that

∑
ciai = 1 for some choice of ci ∈ Z.
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§3 USAMO 2004/3, proposed by Ricky Liu

For what real values of k > 0 is it possible to dissect a 1 × k rectangle into two similar but

noncongruent polygons?

Answer: the dissection is possible for every k > 0 except for k = 1.
Construction. By symmetry it suffices to give a construction for k > 1 (since

otherwise we replace k by k−1). For every integer n ≥ 2 and real number r > 1, we define
a shape R(n, r) as follows.

• We start with a rectangle of width 1 and height r. To its left, we glue a rectangle
of height r and width r2 to its left.

• Then, we glue a rectangle of width 1 + r2 and height r3 below our figure, followed
by a rectangle of height r + r3 and width r4 to the left of our figure.

• Next, we glue a rectangle of width 1 + r2 + r4 and height r5 below our figure,
followed by a rectangle of height r + r3 + r5 and width r6 to the left of our figure.

. . . and so on, up until we have put 2n rectangles together. The picture R(3, r) is shown
below as an example.

1r2r4r6

r1

r3

r5

Observe that by construction, the entire shape R(n, r) is a rectangle which consists of two
similar “staircase” polygons (which are not congruent, since r > 1). Note that R(n, r) is
similar to a 1× fn(r) rectangle where fn(r) is the aspect ratio of R(n, r), defined by

fn(r) =
1 + r2 + · · ·+ r2n

r + r3 + · · ·+ r2n−1
= r +

1

r + r3 + · · ·+ r2n−1
.

We claim that this is enough. Indeed for each fixed n, note that

lim
r→1+

fn(r) = 1 +
1

n
and lim

r→∞
fn(r) =∞.

Since fn is continuous, it achieves all values greater than 1+ 1
n . Thus by taking sufficiently

large n (such that k > 1 + 1
n), we obtain a valid construction for any k > 1.

Proof of impossibility for a square. Now we show that k = 1 is impossible (the
tricky part!). Suppose we have a squared dissected into two similar polygons P ∼ Q. Let
Γ be their common boundary. By counting the number of sides of P and Q we see Γ
must run from one side of the square to an opposite side (possibly ending at a corner of
the square). We orient the figure so Γ runs from north to south, with P to the west and
Q to the east.

6

http://web.evanchen.cc


USAMO 2004 Solution Notes web.evanchen.cc, updated April 17, 2020

Γ

P Q

Let s be the longest length of a segment in Γ.

Claim — The longest side length of P is max(s, 1). Similarly, the longest side
length of Q is max(s, 1) as well.

Proof. The only edges of P not in Γ are the west edge of our original square, which has
length 1, and the north/south edges of P (if any), which have length at most 1. An
identical argument works for Q.

It follows the longest sides of P and Q have the same length! Hence the two polygons
are in fact congruent, ending the proof.
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§4 USAMO 2004/4, proposed by Melanie Wood

Alice and Bob play a game on a 6 by 6 grid. On his turn, a player chooses a rational number not

yet appearing in the grid and writes it in an empty square of the grid. Alice goes first and then

the players alternate. When all squares have numbers written in them, in each row, the square

with the greatest number in that row is colored black. Alice wins if he can then draw a line from

the top of the grid to the bottom of the grid that stays in black squares, and Bob wins if he can’t.

(If two squares share a vertex, Alice can draw a line from one to the other that stays in those two

squares.) Find, with proof, a winning strategy for one of the players.

Bob can win. Label the first two rows as follows:[
a b c d e f
d′ e′ f ′ a′ b′ c′

]
These twelve boxes thus come in six pairs, (a, a′), (b, b′) and so on.

Claim — Bob can ensure that the order relation of the labels is the same between
the two rows, meaning that a < b if and only if a′ < b′, and so on.

Proof. If Alice plays q in some box in the first two rows, then Bob can plays q + ε in the
corresponding box in the same pair, for some sufficiently small ε (in terms of the existing
numbers).

When Alice writes a number in any other row, Bob writes anywhere in rows 3 to 6.

Under this strategy the black squares in the first two rows will be a pair and therefore
will not touch, so Bob wins.

8
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§5 USAMO 2004/5, proposed by Titu Andreescu

Let a, b, c be positive reals. Prove that

(a5 − a2 + 3)(b5 − b2 + 3)(c5 − c2 + 3) ≥ (a + b + c)
3
.

Observe that for all real numbers a, the inequality

a5 − a2 + 3 ≥ a3 + 2

holds. Then the problem follows by Hölder in the form

(a3 + 1 + 1)(1 + b3 + 1)(1 + 1 + c3) ≥ (a + b + c)3.

9
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§6 USAMO 2004/6, proposed by Zuming Feng

A circle ω is inscribed in a quadrilateral ABCD. Let I be the center of ω. Suppose that

(AI + DI)2 + (BI + CI)2 = (AB + CD)2.

Prove that ABCD is an isosceles trapezoid.

Here’s a completely algebraic solution. WLOG ω has radius 1, and let a, b, c, d be the
lengths of the tangents from A, B, C, D to ω. It is known that

a + b + c + d = abc + bcd + cda + dab (?)

which can be proved by, say tan-addition formula. Then, the content of the problem is
to show that

(
√
a2 + 1 +

√
d2 + 1)2 + (

√
b2 + 1 +

√
c2 + 1)2 ≤ (a + b + c + d)2

subject to (?), with equality only when a = d = 1
b = 1

c .
Let S = ab + bc + cd + da + ac + bd. Then the inequality is√

(a2 + 1)(d2 + 1) +
√

(b2 + 1)(c2 + 1) ≤ S − 2.

Now, by USAMO 2014 Problem 1 and the condition (?), we have that (a2 + 1)(b2 +
1)(c2 + 1)(d2 + 1) = (S − abcd− 1)2. So squaring both sides, the inequality becomes

(ad)2 + (bc)2 + a2 + b2 + c2 + d2 ≤ S2 − 6S + 2abcd + 4.

To simplify this, we use the identities

S2 = 6abcd +
∑
sym

a2bc +
1

4

∑
sym

a2b2

(a + b + c + d)2 = (abc + bcd + cda + dab)(a + b + c + d)

= 4abcd +
1

2

∑
sym

a2bc

So S2 + 2abcd = 1
4

∑
sym a2b2 + 2(a2 + b2 + c2 + d2) + 4S and the inequality we want to

prove reduces to

2S ≤ (ab)2 + (ac)2 + (bd)2 + (cd)2 + 4 + a2 + b2 + c2 + d2.

This follows by AM-GM since

(ab)2 + 1 ≥ 2ab

(ac)2 + 1 ≥ 2ac

(bd)2 + 1 ≥ 2bd

(cd)2 + 1 ≥ 2cda2 + d2 ≥ 2ad

b2 + c2 ≥ 2bc.

The equality case is when ab = ac = bd = cd = 1, a = d, b = c, as needed to imply an
isosceles trapezoid.
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Remark. Note that a priori one expects an inequality. Indeed,

• Quadrilaterals with incircles have four degrees of freedom.

• There is one condition imposed.

• Isosceles trapezoid with incircles have two degrees of freedom.

11
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34th United States of America Mathematical Olympiad

Day I 12:30 PM – 5 PM EDT

April 19, 2005

1. Determine all composite positive integers n for which it is possible to arrange all divisors

of n that are greater than 1 in a circle so that no two adjacent divisors are relatively prime.

2. Prove that the system

x6 + x3 + x3y + y = 147157

x3 + x3y + y2 + y + z9 = 157147

has no solutions in integers x, y, and z.

3. Let ABC be an acute-angled triangle, and let P and Q be two points on side BC. Con-

struct point C1 in such a way that convex quadrilateral APBC1 is cyclic, QC1 ‖ CA, and

C1 and Q lie on opposite sides of line AB. Construct point B1 in such a way that convex

quadrilateral APCB1 is cyclic, QB1 ‖ BA, and B1 and Q lie on opposite sides of line AC.

Prove that points B1, C1, P , and Q lie on a circle.

Copyright c© Committee on the American Mathematics Competitions,
Mathematical Association of America



34th United States of America Mathematical Olympiad

Day II 12:30 PM – 5 PM EDT

April 20, 2005

1. Legs L1, L2, L3, L4 of a square table each have length n, where n is a positive integer. For

how many ordered 4-tuples (k1, k2, k3, k4) of nonnegative integers can we cut a piece of

length ki from the end of leg Li (i = 1, 2, 3, 4) and still have a stable table? (The table is

stable if it can be placed so that all four of the leg ends touch the floor. Note that a cut

leg of length 0 is permitted.)

2. Let n be an integer greater than 1. Suppose 2n points are given in the plane, no three

of which are collinear. Suppose n of the given 2n points are colored blue and the other

n colored red. A line in the plane is called a balancing line if it passes through one blue

and one red point and, for each side of the line, the number of blue points on that side is

equal to the number of red points on the same side. Prove that there exist at least two

balancing lines.

3. For m a positive integer, let s(m) be the sum of the digits of m. For n ≥ 2, let f(n) be the

minimal k for which there exists a set S of n positive integers such that s
(∑

x∈X x
)

= k

for any nonempty subset X ⊂ S. Prove that there are constants 0 < C1 < C2 with

C1 log10 n ≤ f(n) ≤ C2 log10 n.

Copyright c© Committee on the American Mathematics Competitions,
Mathematical Association of America



34th United States of America Mathematical Olympiad

1. Determine all composite positive integers n for which it is possible to arrange all divisors

of n that are greater than 1 in a circle so that no two adjacent divisors are relatively prime.

Solution. No such circular arrangement exists for n = pq, where p and q are distinct

primes. In that case, the numbers to be arranged are p, q and pq, and in any circular

arrangement, p and q will be adjacent. We claim that the desired circular arrangement

exists in all other cases. If n = pe where e ≥ 2, an arbitrary circular arrangement works.

Henceforth we assume that n has prime factorization pe1
1 pe2

2 · · · pek
k , where p1 < p2 <

· · · < pk and either k > 2 or else max(e1, e2) > 1. To construct the desired circular

arrangement of Dn := {d : d|n and d > 1}, start with the circular arrangement of

n, p1p2, p2p3, . . . , pk−1pk as shown.

n p1p2
p2p3

pk−1pk

Then between n and p1p2, place (in arbitrary order) all other members of Dn that have p1

as their smallest prime factor. Between p1p2 and p2p3, place all members of Dn other than

p2p3 that have p2 as their smallest prime factor. Continue in this way, ending by placing

pk, p
2
k, . . . , p

ek
k between pk−1pk and n. It is easy to see that each element of Dn is placed

exactly one time, and any two adjacent elements have a common prime factor. Hence this

arrangement has the desired property.

Note. In graph theory terms, this construction yields a Hamiltonian cycle1 in the graph

with vertex set Dn in which two vertices form an edge if the two corresponding numbers

have a common prime factor. The graphs below illustrate the construction for the special

cases n = p2q and n = pqr.

1A cycle of length k in a graph is a sequence of distinct vertices v1, v2, . . . , vk such that
{v1, v2}, {v2, v3}, . . . {vk−1, vk}, {vk, v1} are edges. A cycle that uses every vertex of the graph is a Hamiltonian
cycle.



q

p2

pq n
p

n = p2q

p

pq

q
qr

r

rp
n

n = pqr

This problem was proposed by Zuming Feng.

2. Prove that the system

x6 + x3 + x3y + y = 147157

x3 + x3y + y2 + y + z9 = 157147

has no solutions in integers x, y, and z.

First Solution. Add the two equations, then add 1 to each side to obtain

(x3 + y + 1)2 + z9 = 147157 + 157147 + 1. (1)

We prove that the two sides of this expression cannot be congruent modulo 19. We choose

19 because the least common multiple of the exponents 2 and 9 is 18, and by Fermat’s

Theorem, a18 ≡ 1 (mod 19) when a is not a multiple of 19. In particular, (z9)2 ≡ 0 or 1

(mod 19), and it follows that the possible remainders when z9 is divided by 19 are

−1, 0, 1. (2)

Next calculate n2 modulo 19 for n = 0, 1, . . . , 9 to see that the possible residues modulo

19 are

−8, −3, −2, 0, 1, 4, 5, 6, 7, 9. (3)

Finally, apply Fermat’s Theorem to see that

147157 + 157147 + 1 ≡ 14 (mod 19).

Because we cannot obtain 14 (or −5) by adding a number from list (2) to a number from

list (3), it follows that the left side of (1) cannot be congruent to 14 modulo 19. Thus the

system has no solution in integers x, y, z.



Second Solution. We will show there is no solution to the system modulo 13. Add the

two equations and add 1 to obtain

(x3 + y + 1)2 + z9 = 147157 + 157147 + 1.

By Fermat’s Theorem, a12 ≡ 1 (mod 13) when a is not a multiple of 13. Hence we compute

147157 ≡ 41 ≡ 4 (mod 13) and 157147 ≡ 13 ≡ 1 (mod 13). Thus

(x3 + y + 1)2 + z9 ≡ 6 (mod 13).

The cubes mod 13 are 0,±1, and ±5. Writing the first equation as

(x3 + 1)(x3 + y) ≡ 4 (mod 13),

we see that there is no solution in case x3 ≡ −1 (mod 13) and for x3 congruent to 0, 1, 5,−5

(mod 13), correspondingly x3 + y must be congruent to 4, 2, 5,−1. Hence

(x3 + y + 1)2 ≡ 12, 9, 10, or 0 (mod 13).

Also z9 is a cube, hence z9 must be 0, 1, 5, 8, or 12 (mod 13). It is easy to check that 6

(mod 13) is not obtained by adding one of 0, 9, 10, 12 to one of 0, 1, 5, 8, 12. Hence the

system has no solutions in integers.

Note. This argument shows there is no solution even if z9 is replaced by z3.

This problem was proposed by Răzvan Gelca.

3. Let ABC be an acute-angled triangle, and let P and Q be two points on side BC. Con-

struct point C1 in such a way that convex quadrilateral APBC1 is cyclic, QC1 ‖ CA, and

C1 and Q lie on opposite sides of line AB. Construct point B1 in such a way that convex

quadrilateral APCB1 is cyclic, QB1 ‖ BA, and B1 and Q lie on opposite sides of line AC.

Prove that points B1, C1, P , and Q lie on a circle.

Solution. Let α, β, γ denote the angles of ∆ABC. Without loss of generality, we assume

that Q is on the segment BP .



Q

A

B C

C1

B1

P

γβ

α

We guess that B1 is on the line through C1 and A. To confirm that our guess is correct

and prove that B1, C1, P , and Q lie on a circle, we start by letting B2 be the point

other than A that is on the line through C1 and A, and on the circle through C,P ,

and A. Two applications of the Inscribed Angle Theorem yield ∠PC1A ∼= ∠PBA and

∠AB2P ∼= ∠ACP , from which we conclude that ∆PC1B2 ∼ ∆ABC.

Q

A

B C

C1

B2

P

γ

γ

β

β

α

From QC1 ‖ CA we have m∠PQC1 = π − γ so quadrilateral PQC1B2 is cyclic. By the

Inscribed Angle Theorem, m∠B2QC1 = α.



Q

A

B C

C1

B2

P

γβ
α

Finally, m∠PQB2 = (π − γ) − α = β, from which it follows that B1 = B2 and thus

P, Q,C1, and B1 are concyclic.

This problem was proposed by Zuming Feng.

4. Legs L1, L2, L3, L4 of a square table each have length n, where n is a positive integer. For

how many ordered 4-tuples (k1, k2, k3, k4) of nonnegative integers can we cut a piece of

length ki from the end of leg Li (i = 1, 2, 3, 4) and still have a stable table? (The table is

stable if it can be placed so that all four of the leg ends touch the floor. Note that a cut

leg of length 0 is permitted.)

Solution. Turn the table upside down so its surface lies in the xy-plane. We may as-

sume that the corner with leg L1 is at (1, 0), and the corners with legs L2, L3, L4 are at

(0, 1), (−1, 0), (0,−1), respectively. (We may do this because rescaling the x and y coor-

dinates does not affect the stability of the cut table.) For i = 1, 2, 3, 4, let `i be the length

of leg Li after it is cut. Thus 0 ≤ `i ≤ n for each i. The table will be stable if and only if

the four points F1(1, 0, `1), F2(0, 1, `2), F3(−1, 0, `3), and F4(0,−1, `4) are coplanar. This

will be the case if and only if F1F3 intersects F2F4, and this will happen if and only if the

midpoints of the two segments coincide, that is,

(0, 0, (`1 + `3)/2) = (0, 0, (`2 + `4)/2). (∗)

Because each `i is an integer satisfying 0 ≤ `i ≤ n, the third coordinate for each of these

midpoints can be any of the numbers 0, 1
2
, 1, 3

2
, . . . , n.

For each nonnegative integer k ≤ n, let Sk be the number of solutions of x + y = k where

x, y are integers satisfying 0 ≤ x, y ≤ n. The number of stable tables (in other words, the

number of solutions of (∗)) is N =
∑n

k=0 S2
k .



Next we determine Sk. For 0 ≤ k ≤ n, the solutions to x + y = k are described by the

ordered pairs (j, k− j), 0 ≤ j ≤ k. Thus Sk = k +1 in this case. For each n+1 ≤ k ≤ 2n,

the solutions to x + y = k are given by (x, y) = (j, k − j), k − n ≤ j ≤ n. Thus

Sk = 2n− k + 1 in this case. The number of stable tables is therefore

N = 12 + 22 + · · ·n2 + (n + 1)2 + n2 + · · ·+ 12

= 2
n(n + 1)(2n + 1)

6
+ (n + 1)2

=
1

3
(n + 1)(2n2 + 4n + 3).

This problem was proposed by Elgin Johnston.

5. Let n be an integer greater than 1. Suppose 2n points are given in the plane, no three

of which are collinear. Suppose n of the given 2n points are colored blue and the other

n colored red. A line in the plane is called a balancing line if it passes through one blue

and one red point and, for each side of the line, the number of blue points on that side is

equal to the number of red points on the same side. Prove that there exist at least two

balancing lines.

Solution. We will show that every vertex of the convex hull of the set of given 2n points

lies on a balancing line.

Let R be a vertex of the convex hull of the given 2n points and assume, without loss of

generality, that R is red. Since R is a vertex of the convex hull, there exists a line ` through

R such that all of the given points (except R) lie on the same side of `. If we rotate `

about R in the clockwise direction, we will encounter all of the blue points in some order.

Denote the blue points by B1, B2, . . . , Bn in the order in which they are encountered as `

is rotated clockwise about R. For i = 1, . . . , n, let bi and ri be the numbers of blue points

and red points, respectively, that are encountered before the point Bi as ` is rotated (in

particular, Bi is not counted in bi and R is never counted). Then

bi = i− 1,

for i = 1, . . . , n, and

0 ≤ r1 ≤ r2 ≤ · · · ≤ rn ≤ n− 1.

We show now that bi = ri, for some i = 1, . . . , n. Define di = ri − bi, i = 1, . . . , n.

Then d1 = r1 ≥ 0 and dn = rn − bn = rn − (n − 1) ≤ 0. Thus the sequence d1, . . . , dn



starts nonnegative and ends nonpositive. As i grows, ri does not decrease, while bi always

increases by exactly 1. This means that the sequence d1, . . . , dn can never decrease by

more than 1 between consecutive terms. Indeed,

di − di+1 = (ri − ri+1) + (bi+1 − bi) ≤ 0 + 1 = 1,

for i = 1, . . . , n − 1. Since the integer-valued sequence d1, d2, . . . , dn starts nonnegative,

ends nonpositive, and never decreases by more than 1 (so it never jumps over any integer

value on the way down), it must attain the value 0 at some point, i.e., there exists some

i = 1, . . . , n for which di = 0. For such an i, we have ri = bi and RBi is a balancing line.

Since n ≥ 2, the convex hull of the 2n points has at least 3 vertices, and since each of

the vertices of the convex hull lies on a balancing line, there must be at least two distinct

balancing lines.

Notes. The main ingredient in the solution above is a discrete version of a “tortoise-and-

hare” argument. Indeed, the tortoise crawls slowly but methodically and is at distance

bi = i − 1 from the start at the moment i, i = 1, . . . , n, while the hare possibly jumps

ahead at first (r1 ≥ 0 = b1), but eventually becomes lazy or distracted and finishes at

most as far as the tortoise (rn ≤ n − 1 = bn). Since the tortoise does not skip any value

and the hare never goes back towards the start, the tortoise must be even with the hare

at some point.

We also note that a point not on the convex hull need not lie on any balancing line (for

example, let n = 2 and let the convex hull be a triangle).

One can show (with much more work) that there are always at least n balancing lines; this

is a theorem of J. Pach and R. Pinchasi (On the number of balanced lines, Discrete and

Computational Geometry 25 (2001), 611–628). This is the best possible bound. Indeed,

if n consecutive vertices in a regular 2n-gon are colored blue and the other n are colored

red, there are exactly n balancing lines.

This problem was proposed by Kiran Kedlaya.

6. For m a positive integer, let s(m) be the sum of the digits of m. For n ≥ 2, let f(n) be the

minimal k for which there exists a set S of n positive integers such that s
(∑

x∈X x
)

= k

for any nonempty subset X ⊂ S. Prove that there are constants 0 < C1 < C2 with

C1 log10 n ≤ f(n) ≤ C2 log10 n.



Solution: For the upper bound, let p be the smallest integer such that 10p ≥ n(n + 1)/2

and let

S = {10p − 1, 2(10p − 1), . . . , n(10p − 1)}.
The sum of any nonempty set of elements of S will have the form k(10p − 1) for some

1 ≤ k ≤ n(n + 1)/2. Write k(10p − 1) = [(k − 1)10p] + [(10p − 1) − (k − 1)]. The second

term gives the bottom p digits of the sum and the first term gives at most p top digits.

Since the sum of a digit of the second term and the corresponding digit of k− 1 is always

9, the sum of the digits will be 9p. Since 10p−1 < n(n + 1)/2, this example shows that

f(n) ≤ 9p < 9 log10(5n(n + 1)).

Since n ≥ 2, 5(n + 1) < n4, and hence

f(n) < 9 log10 n5 = 45 log10 n.

For the lower bound, let S be a set of n ≥ 2 positive integers such that any nonempty

X ⊂ S has s
(∑

x∈X x
)

= f(n). Since s(m) is always congruent to m modulo 9,
∑

x∈X x ≡
f(n) (mod 9) for all nonempty X ⊂ S. Hence every element of S must be a multiple of

9 and f(n) ≥ 9. Let q be the largest positive integer such that 10q − 1 ≤ n. Lemma 1

below shows that there is a nonempty subset X of S with
∑

x∈X x a multiple of 10q − 1,

and hence Lemma 2 shows that f(n) ≥ 9q.

Lemma 1. Any set of m positive integers contains a nonempty subset whose sum is a

multiple of m.

Proof. Suppose a set T has no nonempty subset with sum divisible by m. Look at the

possible sums mod m of nonempty subsets of T . Adding a new element a to T will give at

least one new sum mod m, namely the least multiple of a which does not already occur.

Therefore the set T has at least |T | distinct sums mod m of nonempty subsets and |T | < m.

Lemma 2. Any positive multiple M of 10q − 1 has s(M) ≥ 9q.

Proof. Suppose on the contrary that M is the smallest positive multiple of 10q − 1 with

s(M) < 9q. Then M 6= 10q − 1, hence M > 10q. Suppose the most significant digit of M

is the 10m digit, m ≥ q. Then N = M − 10m−q(10q − 1) is a smaller positive multiple of

10q − 1 and has s(N) ≤ s(M) < 9q, a contradiction.



Finally, since 10q+1 > n, we have q + 1 > log10 n. Since f(n) ≥ 9q and f(n) ≥ 9, we have

f(n) ≥ 9q + 9

2
>

9

2
log10 n.

Weaker versions of Lemmas 1 and 2 are still sufficient to prove the desired type of lower

bound.

This problem was proposed by Titu Andreescu and Gabriel Dospinescu.
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§0 Problems

1. Determine all composite positive integers n for which it is possible to arrange all
divisors of n that are greater than 1 in a circle so that no two adjacent divisors are
relatively prime.

2. Prove that the system of equations

x6 + x3 + x3y + y = 147157

x3 + x3y + y2 + y + z9 = 157147

has no integer solutions.

3. Let ABC be an acute-angled triangle, and let P and Q be two points on side BC.
Construct a point C1 in such a way that the convex quadrilateral APBC1 is cyclic,
QC1 ‖ CA, and C1 and Q lie on opposite sides of line AB. Construct a point B1

in such a way that the convex quadrilateral APCB1 is cyclic, QB1 ‖ BA, and B1

and Q lie on opposite sides of line AC. Prove that the points B1, C1, P , and Q lie
on a circle.

4. Legs L1, L2, L3, L4 of a square table each have length n, where n is a positive
integer. For how many ordered 4-tuples (k1, k2, k3, k4) of nonnegative integers can
we cut a piece of length ki from the end of leg Li and still have a stable table?

(The table is stable if it can be placed so that all four of the leg ends touch the
floor. Note that a cut leg of length 0 is permitted.)

5. Let n > 1 be an integer. Suppose 2n points are given in the plane, no three of
which are collinear. Suppose n of the given 2n points are colored blue and the other
n colored red. A line in the plane is called a balancing line if it passes through one
blue and one red point and, for each side of the line, the number of blue points on
that side is equal to the number of red points on the same side. Prove that there
exist at least two balancing lines.

6. For a positive integer m, let s(m) denote the sum of the decimal digits of m. A set
S positive integers is k-stable if s(

∑
x∈X x) = k for any nonempty subset X ⊆ S.

For each integer n ≥ 2 let f(n) be the minimal k for which there exists a k-stable
set with n integers. Prove that there are constants 0 < C1 < C2 with

C1 log10 n ≤ f(n) ≤ C2 log10 n.
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§1 USAMO 2005/1, proposed by Zuming Feng

Determine all composite positive integers n for which it is possible to arrange all divisors of n

that are greater than 1 in a circle so that no two adjacent divisors are relatively prime.

The only bad ones are n = pq, products of two distinct primes. Clearly they can’t be
so arranged, so we show all others work.

• If n is a power of a prime, the result is obvious.

• If n = pe11 . . . pekk for some k ≥ 3, then first situate p1p2, p2p3, . . . , pkp1 on the circle.
Then we can arbitrarily place any multiples of pi between pi−1pi and pipi+1. This
finishes this case.

• Finally suppose n = paqb. If a > 1, say, we can repeat the argument by first placing
pq and p2q and then placing multiples of p in one arc and multiples of q in the
other arc. On the other hand the case a = b = 1 is seen to be impossible.

3
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§2 USAMO 2005/2, proposed by Razvan Gelca

Prove that the system of equations

x6 + x3 + x3y + y = 147157

x3 + x3y + y2 + y + z9 = 157147

has no integer solutions.

Sum the equations and add 1 to both sides to get

(x3 + y + 1)2 + z9 = 147157 + 157147 + 1 ≡ 14 (mod 19)

But a2 + b9 6≡ 14 (mod 19) for any integers a and b, since the ninth powers modulo 19
are 0, ±1 and none of {13, 14, 15} are squares modulo 19. Therefore, there are no integer
solutions.

4
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§3 USAMO 2005/3, proposed by Zuming Feng

Let ABC be an acute-angled triangle, and let P and Q be two points on side BC. Construct

a point C1 in such a way that the convex quadrilateral APBC1 is cyclic, QC1 ‖ CA, and C1

and Q lie on opposite sides of line AB. Construct a point B1 in such a way that the convex

quadrilateral APCB1 is cyclic, QB1 ‖ BA, and B1 and Q lie on opposite sides of line AC. Prove

that the points B1, C1, P , and Q lie on a circle.

It is enough to prove that A, B1, and C1 are collinear, since then ]C1QP = ]ACP =
]AB1P = ]C1B1P .

A

B CP

B1

Q

C1

First solution Let T be the second intersection of AC1 with (APC). Then readily
4PC1T ∼ 4ABC. Consequently, QC1 ‖ AC implies TC1QP cyclic. Finally, TQ ‖ AB
now follows from the cyclic condition, so T = B1 as desired.

Second solution One may also use barycentric coordinates. Let P = (0,m, n) and
Q = (0, r, s) with m + n = r + s = 1. Once again,

(APB) : −a2yz − b2zx− c2xy + (x + y + z)(a2m · z) = 0.

Set C1 = (s− z, r, z), where C1Q ‖ AC follows by (s− z) + r + z = 1. We solve for this z.

0 = −a2rz + (s− z)(−b2z − c2r) + a2mz

= b2z2 + (−sb2 + rc2)z − a2rz + a2mz − c2rs

= b2z2 + (−sb2 + rc2 + a2(m− r))z − c2rs

=⇒ 0 = rb2
(z
r

)2
+ (−sb2 + rc2 + a2(m− r))

(z
r

)
− c2s.

So the quotient of the z and y coordinates of C1 satisfies this quadratic. Similarly, if
B1 = (r − y, y, s) we obtain that

0 = sc2
(y
s

)2
+ (−rc2 + sb2 + a2(n− s))

(y
s

)
− b2r

Since these two quadratics are the same when one is written backwards (and negated), it
follows that their roots are reciprocals. But the roots of the quadratics represent z

y and y
z

for the points C1 and B1, respectively. This implies (with some configuration blah) that
the points B1 and C1 are collinear with A = (1, 0, 0) (in some line of the form y

z = k), as
desired.

5

http://web.evanchen.cc


USAMO 2005 Solution Notes web.evanchen.cc, updated April 17, 2020

§4 USAMO 2005/4, proposed by Elgin Johnston

Legs L1, L2, L3, L4 of a square table each have length n, where n is a positive integer. For how
many ordered 4-tuples (k1, k2, k3, k4) of nonnegative integers can we cut a piece of length ki from
the end of leg Li and still have a stable table?

(The table is stable if it can be placed so that all four of the leg ends touch the floor. Note

that a cut leg of length 0 is permitted.)

Flip the table upside-down so that that the tabele’s surface rests on the floor. Then,
we see that we want the truncated legs to have endpoints A, B, C, D which are coplanar
(say).

Claim — This occurs if and only if ABCD is a parallelogram.

Proof. Obviously ABCD being a parallelogram is necessary. Conversely, if they are
coplanar, we let D′ be such that ABCD′ is a parallelogram. Then D′ also lies in the
same plane as ABCD, but is situated directly above D (since the table was a square).
This implies D′ = D, as needed.

In still other words, we are counting the number of solutions to

(n− k1) + (n− k3) = (n− k2) + (n− k4) ⇐⇒ k1 + k3 = k2 + k4.

Define
ar = #{(a, b) | a + b = r, 0 ≤ a, b ≤ n}

so that the number of solutions to k1 + k3 = k2 + k4 = r is just given by a2r . We now just
compute

2n∑
r=0

a2r = 12 + 22 + · · ·+ n2 + (n + 1)2 + n2 + · · ·+ 12

=
1

3
(n + 1)(2n2 + 4n + 3).
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§5 USAMO 2005/5, proposed by Kiran Kedlaya

Let n > 1 be an integer. Suppose 2n points are given in the plane, no three of which are collinear.

Suppose n of the given 2n points are colored blue and the other n colored red. A line in the plane

is called a balancing line if it passes through one blue and one red point and, for each side of the

line, the number of blue points on that side is equal to the number of red points on the same side.

Prove that there exist at least two balancing lines.

Consider the convex hull H of the polygon. There are two cases.
The easy case: if the convex hull H is not all the same color, there exist two edges of
H (at least) which have differently colored endpoints. The extensions of those sides form
balancing lines; indeed given any such line ` one side of ` has no points, the other has
n− 1 red and n− 1 blue points.

So now assume H is all blue (WLOG). We will prove there are at least |H| balancing
lines in the following way.

Claim — For any vertex B of H there is a balancing line through it.

Proof. Assume A, B, C are three consecutive blue vertices of H. Imagine starting with
line ` passing through B and A, then rotating it through B until it coincides with line
BC, through the polygon.

H

B

A C

`

During this process, we consider the set of points on the same side of ` as C, and let x
be the number of such red points minus the number of such blue points. Note that:

• Every time ` touches a blue point, x increases by 1.

• Every time ` touches a red point, x decreases by 1.

• Initially, x = +1.

• Just before reaching the end we have x = −1.

So at the moment where x first equals zero, we have found our balancing line.
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§6 USAMO 2005/6, proposed by Titu Andreescu and Gabriel
Dospinescu

For a positive integer m, let s(m) denote the sum of the decimal digits of m. A set S positive
integers is k-stable if s(

∑
x∈X x) = k for any nonempty subset X ⊆ S.

For each integer n ≥ 2 let f(n) be the minimal k for which there exists a k-stable set with n
integers. Prove that there are constants 0 < C1 < C2 with

C1 log10 n ≤ f(n) ≤ C2 log10 n.

Lower bound: Let n ≥ 1 and r ≥ 1 be integers satisfying 1 + 2 + · · · + n < 10e.
Consider the set

S = {10e − 1, 2(10e − 1), . . . , n(10e − 1)} .
For example, if n = 6 and e = 3, we have S = {999, 1998, 2997, 3996, 4995, 5994}.

The set S here is easily seen to be 9e-good. Thus f(n) ≥ 9 dlog10 ne, proving one
direction.

Remark. I think the problem is actually more natural with a multiset S rather than a
vanilla set, in which case S = {10e − 1, 10e − 1, . . . , 10e − 1} works fine, and is easier to
think of.

In some sense the actual construction is obtained by starting with this one, and then
pushing together the terms together in order to get the terms to be distinct, hence the
1 + 2 + · · ·+ n appearance.

Upper bound: we are going to prove the following, which obviously sufficient.

Claim — Let r be a positive integer. In any (multi)set S of more than 12k integers,
there exists a subset whose sum of decimal digits exceeds k.

Proof. Imagine writing entries of S on a blackboard, while keeping a running sum Σ
initially set to zero. For i = 1, 2, . . . we will have a process such that at the end of the
ith step all entries on the board are divisible by 10i. It goes as follows:

• If the ith digit from the right of Σ is nonzero, then arbitrarily partition the numbers
on the board into groups of 10, erasing any leftover numbers. Within each group of
10, we can find a nonempty subset with sum 0 mod 10i; we then erase each group
and replace it with that sum.

• If the ith digit from the right of Σ is zero, but some entry on the board is not
divisible by 10i, then we erase that entry and add it to Σ. Then we do the grouping
as in the previous step.

• If the ith digit from the right of Σ is zero, and all entries on the board are divisible
by 10i, we do nothing and move on to the next step.

This process ends when no numbers remain on the blackboard. The first and second
cases occur at least k + 1 times (the number of entries decreases by a factor of at most
12 each step), and each time Σ gets some nonzero digit, which is never changed at later
steps. Therefore Σ has sum of digits at least k + 1 as needed.
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Remark. The official solutions contain a slicker proof: it turns out that any multiple of
10e − 1 has sum of decimal digits at least 9e. However, if one does not know this lemma it
seems nontrivial to imagine coming up with it.

9

http://web.evanchen.cc


35th United States of America Mathematical Olympiad

Day I 12:30 PM – 5 PM EDT

April 18, 2006

1. Let p be a prime number and let s be an integer with 0 < s < p. Prove that there exist

integers m and n with 0 < m < n < p and

{
sm

p

}
<

{
sn

p

}
<

s

p

if and only if s is not a divisor of p− 1.

(For x a real number, let bxc denote the greatest integer less than or equal to x, and let

{x} = x− bxc denote the fractional part of x.)

2. For a given positive integer k find, in terms of k, the minimum value of N for which there

is a set of 2k + 1 distinct positive integers that has sum greater than N but every subset

of size k has sum at most N/2.

3. For integral m, let p(m) be the greatest prime divisor of m. By convention, we set p(±1) =

1 and p(0) = ∞. Find all polynomials f with integer coefficients such that the sequence

{p(f(n2))− 2n}n≥0 is bounded above. (In particular, this requires f(n2) 6= 0 for n ≥ 0.)

Copyright c© Mathematical Association of America



35th United States of America Mathematical Olympiad

Day II 12:30 PM – 5 PM EDT

April 19, 2006

4. Find all positive integers n such that there are k ≥ 2 positive rational numbers a1, a2, . . . , ak

satisfying a1 + a2 + . . . + ak = a1 · a2 · · · · ak = n.

5. A mathematical frog jumps along the number line. The frog starts at 1, and jumps

according to the following rule: if the frog is at integer n, then it can jump either to n + 1

or to n + 2mn+1 where 2mn is the largest power of 2 that is a factor of n. Show that if

k ≥ 2 is a positive integer and i is a nonnegative integer, then the minimum number of

jumps needed to reach 2ik is greater than the minimum number of jumps needed to reach

2i.

6. Let ABCD be a quadrilateral, and let E and F be points on sides AD and BC, respec-

tively, such that AE/ED = BF/FC. Ray FE meets rays BA and CD at S and T ,

respectively. Prove that the circumcircles of triangles SAE, SBF , TCF , and TDE pass

through a common point.

Copyright c© Mathematical Association of America



35th United States of America Mathematical Olympiad

1. Let p be a prime number and let s be an integer with 0 < s < p. Prove that there exist

integers m and n with 0 < m < n < p and
{

sm

p

}
<

{
sn

p

}
<

s

p

if and only if s is not a divisor of p− 1.

(For x a real number, let bxc denote the greatest integer less than or equal to x, and let

{x} = x− bxc denote the fractional part of x.)

First Solution. First suppose that s is a divisor of p − 1; write d = (p − 1)/s. As x

varies among 1, 2, . . . , p − 1, {sx/p} takes the values 1/p, 2/p, . . . , (p − 1)/p once each in

some order. The possible values with {sx/p} < s/p are precisely 1/p, . . . , (s− 1)/p. From

the fact that {sd/p} = (p − 1)/p, we realize that the values {sx/p} = (p − 1)/p, (p −
2)/p, . . . , (p− s + 1)/p occur for

x = d, 2d, . . . , (s− 1)d

(which are all between 0 and p), and so the values {sx/p} = 1/p, 2/p, . . . , (s− 1)/p occur

for

x = p− d, p− 2d, . . . , p− (s− 1)d,

respectively. From this it is clear that m and n cannot exist as requested.

Conversely, suppose that s is not a divisor of p−1. Put m = dp/se; then m is the smallest

positive integer such that {ms/p} < s/p, and in fact {ms/p} = (ms− p)/p. However, we

cannot have {ms/p} = (s − 1)/p or else we would have (m − 1)s = p − 1, contradicting

our hypothesis that s does not divide p−1. Hence the unique n ∈ {1, . . . , p−1} for which

{nx/p} = (s − 1)/p has the desired properties (since the fact that {nx/p} < s/p forces

n ≥ m, but m 6= n).

Second Solution. We prove the contrapositive statement:

Let p be a prime number and let s be an integer with 0 < s < p. Prove that the

following statements are equivalent:

(a) s is a divisor of p− 1;

1



(b) if integers m and n are such that 0 < m < p, 0 < n < p, and
{

sm

p

}
<

{
sn

p

}
<

s

p
,

then 0 < n < m < p.

Since p is prime and 0 < s < p, s is relatively prime to p and

S = {s, 2s, . . . , (p− 1)s, ps}

is a set of complete residues classes modulo p. In particular,

(1) there is an unique integer d with 0 < d < p such that sd ≡ −1 (mod p); and

(2) for every k with 0 < k < p, there exists a unique pair of integers (mk, ak) with

0 < mk < p such that mks + akp = k.

Now we consider the equations

m1s + a1p = 1, m2s + a2p = 2, . . . , mss + asp = s.

Hence {mks/p} = k/p for 1 ≤ k ≤ s.

Statement (b) holds if and only 0 < ms < ms−1 < · · · < m1 < p. For 1 ≤ k ≤ s − 1,

mks − mk+1s = (ak+1 − ak)p − 1, or (mk − mk+1)s ≡ −1 (mod p). Since 0 < mk+1 <

mk < p, by (1), we have mk − mk+1 = d. We conclude that (b) holds if and only if

ms,ms−1, . . . , m1 form an arithmetic progression with common difference −d. Clearly

ms = 1, so m1 = 1 + (s− 1)d = jp− d + 1 for some j. Then j = 1 because m1 and d are

both positive and less than p, so sd = p− 1. This proves (a).

Conversely, if (a) holds, then sd = p − 1 and mk ≡ −dsmk ≡ −dk (mod p). Hence

mk = p − dk for 1 ≤ k ≤ s. Thus ms,ms−1, . . . ,m1 form an arithmetic progression with

common difference −d. Hence (b) holds.

This problem was proposed by Kiran Kedlaya.

2. For a given positive integer k find, in terms of k, the minimum value of N for which there

is a set of 2k + 1 distinct positive integers that has sum greater than N but every subset

of size k has sum at most N/2.

Solution. The minimum is N = 2k3 + 3k2 + 3k. The set

{k2 + 1, k2 + 2, . . . , k2 + 2k + 1}

2



has sum 2k3 +3k2 +3k+1 = N +1 which exceeds N , but the sum of the k largest elements

is only (2k3 + 3k2 + 3k)/2 = N/2. Thus this N is such a value.

Suppose N < 2k3 + 3k2 + 3k and there are positive integers a1 < a2 < · · · < a2k+1 with

a1 + a2 + · · ·+ a2k+1 > N and ak+2 + · · ·+ a2k+1 ≤ N/2. Then

(ak+1 + 1) + (ak+1 + 2) + · · ·+ (ak+1 + k) ≤ ak+2 + · · ·+ a2k+1 ≤ N/2 <
2k3 + 3k2 + 3k

2
.

This rearranges to give 2kak+1 ≤ N − k2− k and ak+1 < k2 + k + 1. Hence ak+1 ≤ k2 + k.

Combining these we get

2(k + 1)ak+1 ≤ N + k2 + k.

We also have

(ak+1 − k) + · · ·+ (ak+1 − 1) + ak+1 ≥ a1 + · · ·+ ak+1 > N/2

or 2(k + 1)ak+1 > N + k2 + k. This contradicts the previous inequality, hence no such set

exists for N < 2k3 + 3k2 + 3k and the stated value is the minimum.

This problem was proposed by Dick Gibbs.

3. For integral m, let p(m) be the greatest prime divisor of m. By convention, we set p(±1) =

1 and p(0) = ∞. Find all polynomials f with integer coefficients such that the sequence

{p(f(n2))− 2n}n≥0 is bounded above. (In particular, this requires f(n2) 6= 0 for n ≥ 0.)

Solution. The polynomial f has the required properties if and only if

f(x) = c(4x− a2
1)(4x− a2

2) · · · (4x− a2
k), (∗)

where a1, a2, . . . , ak are odd positive integers and c is a nonzero integer. It is straightfor-

ward to verify that polynomials given by (∗) have the required property. If p is a prime

divisor of f(n2) but not of c, then p|(2n − aj) or p|(2n + aj) for some j ≤ k. Hence

p − 2n ≤ max{a1, a2, . . . , ak}. The prime divisors of c form a finite set and do affect

whether or not the given sequence is bounded above. The rest of the proof is devoted to

showing that any f for which {p(f(n2))− 2n}n≥0 is bounded above is given by (∗).
Let Z[x] denote the set of all polynomials with integral coefficients. Given f ∈ Z[x], let

P(f) denote the set of those primes that divide at least one of the numbers in the sequence

{f(n)}n≥0. The solution is based on the following lemma.

Lemma. If f ∈ Z[x] is a nonconstant polynomial then P(f) is infinite.

3



Proof. Repeated use will be made of the following basic fact: if a and b are distinct

integers and f ∈ Z[x], then a− b divides f(a)− f(b). If f(0) = 0, then p divides f(p) for

every prime p, so P(f) is infinite. If f(0) = 1, then every prime divisor p of f(n!) satisfies

p > n. Otherwise p divides n!, which in turn divides f(n!)− f(0) = f(n!)− 1. This yields

p|1, which is false. Hence f(0) = 1 implies that P(f) is infinite. To complete the proof, set

g(x) = f(f(0)x)/f(0) and observe that g ∈ Z[x] and g(0) = 1. The preceding argument

shows that P(g) is infinite, and it follows that P(f) is infinite.

Suppose f ∈ Z[x] is nonconstant and there exists a number M such that p(f(n2))− 2n ≤
M for all n ≥ 0. Application of the lemma to f(x2) shows that there is an infinite

sequence of distinct primes {pj} and a corresponding infinite sequence of nonnegative

integers {kj} such that pj|f(k2
j ) for all j ≥ 1. Consider the sequence {rj} where rj =

min{kj (mod pj), pj − kj (mod pj)}. Then 0 ≤ rj ≤ (pj − 1)/2 and pj|f(r2
j ). Hence

2rj + 1 ≤ pj ≤ p(f(r2
j )) ≤ M + 2rj, so 1 ≤ pj − 2rj ≤ M for all j ≥ 1. It follows that

there is an integer a1 such that 1 ≤ a1 ≤ M and a1 = pj − 2rj for infinitely many j.

Let m = deg f . Then pj|4mf((pj − a1)/2)2) and 4mf((x− a1)/2)2) ∈ Z[x]. Consequently,

pj|f((a1/2)2) for infinitely many j, which shows that (a1/2)2 is a zero of f . Since f(n2) 6= 0

for n ≥ 0, a1 must be odd. Then f(x) = (4x − a2
1)g(x) where g ∈ Z[x]. (See the note

below.) Observe that {p(g(n2))− 2n}n≥0 must be bounded above. If g is constant, we are

done. If g is nonconstant, the argument can be repeated to show that f is given by (∗).
Note. The step that gives f(x) = (4x − a2

1)g(x) where g ∈ Z[x] follows immediately

using a lemma of Gauss. The use of such an advanced result can be avoided by first

writing f(x) = r(4x − a2
1)g(x) where r is rational and g ∈ Z[x]. Then continuation gives

f(x) = c(4x−a2
1) · · · (4x−a2

k) where c is rational and the ai are odd. Consideration of the

leading coefficient shows that the denominator of c is 2s for some s ≥ 0 and consideration

of the constant term shows that the denominator is odd. Hence c is an integer.

This problem was proposed by Titu Andreescu and Gabriel Dospinescu.

4. Find all positive integers n such that there are k ≥ 2 positive rational numbers a1, a2, . . . , ak

satisfying a1 + a2 + · · ·+ ak = a1 · a2 · · · ak = n.

Solution. The answer is n = 4 or n ≥ 6.

I. First, we prove that each n ∈ {4, 6, 7, 8, 9, . . .} satisfies the condition.
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(1). If n = 2k ≥ 4 is even, we set (a1, a2, . . . , ak) = (k, 2, 1, . . . , 1):

a1 + a2 + . . . + ak = k + 2 + 1 · (k − 2) = 2k = n,

and

a1 · a2 · . . . · ak = 2k = n .

(2). If n = 2k + 3 ≥ 9 is odd, we set (a1, a2, . . . , ak) =
(
k + 3

2
, 1

2
, 4, 1, . . . , 1

)
:

a1 + a2 + . . . + ak = k +
3

2
+

1

2
+ 4 + (k − 3) = 2k + 3 = n,

and

a1 · a2 · . . . · ak =
(
k +

3

2

)
· 1

2
· 4 = 2k + 3 = n .

(3). A very special case is n = 7, in which we set (a1, a2, a3) =
(

4
3
, 7

6
, 9

2

)
. It is also

easy to check that

a1 + a2 + a3 = a1 · a2 · a3 = 7 = n.

II. Second, we prove by contradiction that each n ∈ {1, 2, 3, 5} fails to satisfy the condi-

tion.

Suppose, on the contrary, that there is a set of k ≥ 2 positive rational numbers whose sum

and product are both n ∈ {1, 2, 3, 5}. By the Arithmetic-Geometric Mean inequality, we

have

n1/k = k
√

a1 · a2 · . . . · ak ≤ a1 + a2 + . . . + ak

k
=

n

k
,

which gives

n ≥ k
k

k−1 = k1+ 1
k−1 .

Note that n > 5 whenever k = 3, 4, or k ≥ 5:

k = 3 ⇒ n ≥ 3
√

3 = 5.196... > 5;

k = 4 ⇒ n ≥ 4 3
√

4 = 6.349... > 5;

k ≥ 5 ⇒ n ≥ 51+ 1
k−1 > 5 .

This proves that none of the integers 1, 2, 3, or 5 can be represented as the sum and, at

the same time, as the product of three or more positive numbers a1, a2, . . . , ak, rational

or irrational.
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The remaining case k = 2 also goes to a contradiction. Indeed, a1 + a2 = a1a2 = n implies

that n = a2
1/(a1 − 1) and thus a1 satisfies the quadratic

a2
1 − na1 + n = 0 .

Since a1 is supposed to be rational, the discriminant n2 − 4n must be a perfect square

(a square of a positive integer). However, it can be easily checked that this is not the case

for any n ∈ {1, 2, 3, 5} . This completes the proof.

Remark. Actually, among all positive integers only n = 4 can be represented both as

the sum and product of the same two rational numbers. Indeed, (n − 3)2 < n2 − 4n =

(n− 2)2 − 4 < (n− 2)2 whenever n ≥ 5; and n2 − 4n < 0 for n = 1, 2, 3.

This problem was proposed by Ricky Liu.

5. A mathematical frog jumps along the number line. The frog starts at 1, and jumps

according to the following rule: if the frog is at integer n, then it can jump either to n + 1

or to n + 2mn+1 where 2mn is the largest power of 2 that is a factor of n. Show that if

k ≥ 2 is a positive integer and i is a nonnegative integer, then the minimum number of

jumps needed to reach 2ik is greater than the minimum number of jumps needed to reach

2i.

First Solution. For i ≥ 0 and k ≥ 1, let xi,k denote the minimum number of jumps

needed to reach the integer ni, k = 2ik. We must prove that

xi,k > xi,1 (1)

for all i ≥ 0 and k ≥ 2. We prove this using the method of descent.

First note that (1) holds for i = 0 and all k ≥ 2, because it takes 0 jumps to reach the

starting value n0, 1 = 1, and at least one jump to reach n0,k = k ≥ 2. Now assume that

that (1) is not true for all choices of i and k. Let i0 be the minimal value of i for which

(1) fails for some k, let k0 be the minimal value of k > 1 for which xi0,k ≤ xi0,1. Then it

must be the case that i0 ≥ 1 and k0 ≥ 2.

Let Ji0,k0 be a shortest sequence of xi0, k0 +1 integers that the frog occupies in jumping from

1 to 2i0k0. The length of each jump, that is, the difference between consecutive integers

in Ji0,k0 , is either 1 or a positive integer power of 2. The sequence Ji0,k0 cannot contain

2i0 because it takes more jumps to reach 2i0k0 than it does to reach 2i0 . Let 2M+1, M ≥ 0
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be the length of the longest jump made in generating Ji0,k0 . Such a jump can only be

made from a number that is divisible by 2M (and by no higher power of 2). Thus we must

have M < i0, since otherwise a number divisible by 2i0 is visited before 2i0k0 is reached,

contradicting the definition of k0.

Let 2m+1 be the length of the jump when the frog jumps over 2i0 . If this jump starts at

2m(2t− 1) for some positive integer t, then it will end at 2m(2t− 1) + 2m+1 = 2m(2t + 1).

Since it goes over 2i0 we see 2m(2t − 1) < 2i0 < 2m(2t + 1) or (2i0−m − 1)/2 < t <

(2i0−m + 1)/2. Thus t = 2i0−m−1 and the jump over 2i0 is from 2m(2i0−m − 1) = 2i0 − 2m

to 2m(2i0−m + 1) = 2i0 + 2m.

Considering the jumps that generate Ji0,k0 , let N1 be the number of jumps from 1 to

2i0 +2m, and let N2 be the number of jumps from = 2i0 +2m to 2i0k. By definition of i0, it

follows that 2m can be reached from 1 in less than N1 jumps. On the other hand, because

m < i0, the number 2i0(k0 − 1) can be reached from 2m in exactly N2 jumps by using the

same jump length sequence as in jumping from 2m +2i0 to 2i0k0 = 2i0(k0−1)+2i
0. The key

point here is that the shift by 2i0 does not affect any of divisibility conditions needed to

make jumps of the same length. In particular, with the exception of the last entry, 2i0k0,

all of the elements of Ji0,k0 are of the form 2p(2t + 1) with p < i0, again because of the

definition of k0. Because 2p(2t+1)− 2i0 = 2p(2t− 2i0−p +1) and the number 2t+2i0−p +1

is odd, a jump of size 2p+1 can be made from 2p(2t + 1)− 2i0 just as it can be made from

2p(2t + 1).

Thus the frog can reach 2m from 1 in less than N1 jumps, and can then reach 2i0(k0 − 1)

from 2m in N2 jumps. Hence the frog can reach 2i0(k0 − 1) from 1 in less than N1 + N2

jumps, that is, in fewer jumps than needed to get to 2i0k0 and hence in fewer jumps than

required to get to 2i0 . This contradicts the definition of k0.

Second Solution. Suppose x0 = 1, x1, . . . , xt = 2ik are the integers visited by the frog

on his trip from 1 to 2ik, k ≥ 2. Let sj = xj − xj−1 be the jump sizes. Define a reduced

path yj inductively by

yj =

{
yj−1 + sj if yj−1 + sj ≤ 2i,

yj−1 otherwise.

Say a jump sj is deleted in the second case. We will show that the distinct integers

among the yj give a shorter path from 1 to 2i. Clearly yj ≤ 2i for all j. Suppose

2i − 2r+1 < yj ≤ 2i − 2r for some 0 ≤ r ≤ i− 1. Then every deleted jump before yj must
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have length greater than 2r, hence must be a multiple of 2r+1. Thus yj ≡ xj (mod 2r+1).

If yj+1 > yj, then either sj+1 = 1 (in which case this is a valid jump) or sj+1/2 = 2m is the

exact power of 2 dividing xj. In the second case, since 2r ≥ sj+1 > 2m, the congruence

says 2m is also the exact power of 2 dividing yj, thus again this is a valid jump. Thus the

distinct yj form a valid path for the frog. If j = t the congruence gives yt ≡ xt ≡ 0 (mod

2r+1), but this is impossible for 2i − 2r+1 < yt ≤ 2i − 2r. Hence we see yt = 2i, that is,

the reduced path ends at 2i. Finally since the reduced path ends at 2i < 2ik at least one

jump must have been deleted and it is strictly shorter than the original path.

This problem was proposed by Zoran Sunik.

6. Let ABCD be a quadrilateral, and let E and F be points on sides AD and BC, respec-

tively, such that AE/ED = BF/FC. Ray FE meets rays BA and CD at S and T ,

respectively. Prove that the circumcircles of triangles SAE, SBF , TCF , and TDE pass

through a common point.

First Solution. Let P be the second intersection of the circumcircles of triangles TCF

and TDE. Because the quadrilateral PEDT is cyclic, ∠PET = ∠PDT , or

∠PEF = ∠PDC. (∗)

Because the quadrilateral PFCT is cyclic,

∠PFE = ∠PFT = ∠PCT = ∠PCD. (∗∗)

By equations (∗) and (∗∗), it follows that triangle PEF is similar to triangle PDC. Hence

∠FPE = ∠CPD and PF/PE = PC/PD. Note also that ∠FPC = ∠FPE + ∠EPC =

∠CPD + ∠EPC = ∠EPD. Thus, triangle EPD is similar to triangle FPC. Another

way to say this is that there is a spiral similarity centered at P that sends triangle PFE

to triangle PCD, which implies that there is also a spiral similarity, centered at P , that

sends triangle PFC to triangle PED, and vice versa. In terms of complex numbers, this

amounts to saying that

D − P

E − P
=

C − P

F − P
=⇒ E − P

F − P
=

D − P

C − P
.

8



A

B C

D

E

F

S

T

P

Because AE/ED = BF/FC, points A and B are obtained by extending corresponding

segments of two similar triangles PED and PFC, namely, DE and CF , by the identical

proportion. We conclude that triangle PDA is similar to triangle PCB, implying that

triangle PAE is similar to triangle PBF . Therefore, as shown before, we can establish

the similarity between triangles PBA and PFE, implying that

∠PBS = ∠PBA = ∠PFE = ∠PFS and ∠PAB = ∠PEF.

The first equation above shows that PBFS is cyclic. The second equation shows that

∠PAS = 180◦−∠BAP = 180◦−∠FEP = ∠PES; that is, PAES is cyclic. We conclude

that the circumcircles of triangles SAE, SBF , TCF , and TDE pass through point P .

Note. There are two spiral similarities that send segment EF to segment CD. One of

them sends E and F to D and C, respectively; the point P is the center of this spiral

similarity. The other sends E and F to C and D, respectively; the center of this spiral

similarity is the second intersection (other than T ) of the circumcircles of triangles TFD

and TEC.

Second Solution. We will give a solution using complex coordinates. The first step is

the following lemma.

Lemma. Suppose s and t are real numbers and x, y and z are complex. The circle in

the complex plane passing through x, x + ty and x + (s + t)z also passes through the point

x + syz/(y − z), independent of t.

Proof. Four points z1, z2, z3 and z4 in the complex plane lie on a circle if and only if the

9



cross-ratio

cr(z1, z2, z3, z4) =
(z1 − z3)(z2 − z4)

(z1 − z4)(z2 − z3)

is real. Since we compute

cr(x, x + ty, x + (s + t)z, x + syz/(y − z)) =
s + t

s

the given points are on a circle.

Lay down complex coordinates with S = 0 and E and F on the positive real axis. Then

there are real r1, r2 and R with B = r1A, F = r2E and D = E + R(A − E) and hence

AE/ED = BF/FC gives

C = F + R(B − F ) = r2(1−R)E + r1RA.

The line CD consists of all points of the form sC +(1−s)D for real s. Since T lies on this

line and has zero imaginary part, we see from Im(sC +(1−s)D) = (sr1R+(1−s)R)Im(A)

that it corresponds to s = −1/(r1 − 1). Thus

T =
r1D − C

r1 − 1
=

(r2 − r1)(R− 1)E

r1 − 1
.

Apply the lemma with x = E, y = A−E, z = (r2−r1)E/(r1−1), and s = (r2−1)(r1−r2).

Setting t = 1 gives

(x, x + y, x + (s + 1)z) = (E, A, S = 0)

and setting t = R gives

(x, x + Ry, x + (s + R)z) = (E, D, T ).

Therefore the circumcircles to SAE and TDE meet at

x +
syz

y − z
=

AE(r1 − r2)

(1− r1)E − (1− r2)A
=

AF −BE

A + F −B − E
.

This last expression is invariant under simultaneously interchanging A and B and inter-

changing E and F . Therefore it is also the intersection of the circumcircles of SBF and

TCF .

This problem was proposed by Zuming Feng and Zhonghao Ye.

Copyright c© Mathematical Association of America
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USAMO 2006 Solution Notes web.evanchen.cc, updated April 17, 2020

§0 Problems

1. Let p be a prime number and let s be an integer with 0 < s < p. Prove that there
exist integers m and n with 0 < m < n < p and{

sm

p

}
<

{
sn

p

}
<
s

p

if and only if s is not a divisor of p− 1.

2. Let k > 0 be a fixed integer. Compute the minimum integer N (in terms of k) for
which there exists a set of 2k + 1 distinct positive integers that has sum greater
than N , but for which every subset of size k has sum at most N/2.

3. For integral m, let p(m) be the greatest prime divisor of m. By convention, we set
p(±1) = 1 and p(0) =∞. Find all polynomials f with integer coefficients such that
the sequence

{p(f(n2))− 2n}n≥0
is bounded above. (In particular, this requires f(n2) 6= 0 for n ≥ 0.)

4. Find all positive integers n for which there exist k ≥ 2 positive rational numbers
a1, . . . , ak satisfying a1 + a2 + · · ·+ ak = a1a2 . . . ak = n.

5. A mathematical frog jumps along the number line. The frog starts at 1, and jumps
according to the following rule: if the frog is at integer n, then it can jump either
to n + 1 or to n + 2mn+1 where 2mn is the largest power of 2 that is a factor of
n. Show that if k ≥ 2 is a positive integer and i is a nonnegative integer, then
the minimum number of jumps needed to reach 2ik is greater than the minimum
number of jumps needed to reach 2i.

6. Let ABCD be a quadrilateral, and let E and F be points on sides AD and BC,
respectively, such that AE

ED = BF
FC . Ray FE meets rays BA and CD at S and T ,

respectively. Prove that the circumcircles of triangles SAE, SBF , TCF , and TDE
pass through a common point.

2
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§1 USAMO 2006/1, proposed by Kiran Kedlaya

Let p be a prime number and let s be an integer with 0 < s < p. Prove that there exist integers
m and n with 0 < m < n < p and {

sm

p

}
<

{
sn

p

}
<
s

p

if and only if s is not a divisor of p− 1.

It’s equivalent to ms mod p < ns mod p < s, where x mod p means the remainder
when x is divided by p, by slight abuse of notation. We will assume s ≥ 2 for simplicity,
since the case s = 1 is clear.

For any x ∈ {1, 2, . . . , s− 1} we define f(x) to be the unique number in {1, . . . , p− 1}
such that s · f(x) mod p = x. Then, m and n fail to exist exactly when

f(s− 1) < f(s− 2) < · · · < f(1).

We give the following explicit description of f : choose t ≡ −s−1 (mod p), 0 < t < p.
Then f(x) = 1 + (s− x) · t mod p. So our displayed inequality is equivalent to

(1 + t) mod p < (1 + 2t) mod p < (1 + 3t) mod p < · · · < (1 + (s− 1)t) mod p.

This just means that the sequence 1 + kt never “wraps around” modulo p as we take
k = 1, 2, . . . , s− 1.

Since we assumed s 6= 1, we have 0 < 1 + t < p. Now since 1 + kt never wraps around
as k = 1, 2, . . . , s− 1, and increases in increments of t, it follows that 1 + kt < p for all
k = 1, 2, . . . , s− 1. Finally, as 1 + st ≡ 0 (mod p) we get 1 + st = p.

In summary, m, n fail to exist precisely when 1 + st = p. That is of course equivalent
to s | p− 1.

3
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§2 USAMO 2006/2, proposed by Dick Gibbs

Let k > 0 be a fixed integer. Compute the minimum integer N (in terms of k) for which there

exists a set of 2k + 1 distinct positive integers that has sum greater than N , but for which every

subset of size k has sum at most N/2.

The answer is N = k(2k2 + 3k + 3) given by

S =
{
k2 + 1, k2 + 2, . . . , k2 + 2k + 1

}
.

To show this is best possible, let the set be S = {a0 < a1 < · · · < a2k} so that the
hypothesis becomes

N + 1 ≤ a0 + a1 + · · ·+ a2k

N/2 ≥ ak+1 + · · ·+ a2k.

Subtracting twice the latter from the former gives

a0 ≥ 1 + (ak+1 − a1) + (ak+2 − a2) + · · ·+ (a2k − ak)

≥ 1 + k + k + · · ·+ k︸ ︷︷ ︸
k terms

= 1 + k2.

Now, we have

N/2 ≥ ak+1 + · · ·+ a2k

≥ (a0 + (k + 1)) + (a0 + (k + 2)) + · · ·+ (a0 + 2k)

= k · a0 + ((k + 1) + · · ·+ 2k)

≥ k(k2 + 1) + k · 3k + 1

2

so N ≥ k(2k2 + 3k + 3).

Remark. The exact value of N is therefore very superficial. From playing with these
concrete examples we find out we are essentially just trying to find an increasing set S
obeying

a0 + a1 + · · ·+ ak > ak+1 + · · ·+ a2k (?)

and indeed given a sequence satisfying these properties one simply sets N = 2(ak+1+· · ·+a2k).
Therefore we can focus almost entirely on ai and not N .

Remark. It is relatively straightforward to figure out what is going on based on the small
cases. For example, one can work out by hand that

• {2, 3, 4} is optimal for k = 1

• {5, 6, 7, 8, 9} is optimal for k = 2,

• {10, 11, 12, 13, 14, 15, 16} is optimal for k = 3.

In all the examples, the ai are an arithmetic progression of difference 1, so that aj−ai ≥ j−i
is a sharp for all i < j, and thus this estimate may be used freely without loss of sharpness;
applying it in (?) gives a lower bound on a0 which is then good enough to get a lower bound
on N matching the equality cases we found empirically.

4
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§3 USAMO 2006/3, proposed by Titu Andreescu and Gabriel
Dospinescu

For integral m, let p(m) be the greatest prime divisor of m. By convention, we set p(±1) = 1
and p(0) =∞. Find all polynomials f with integer coefficients such that the sequence

{p(f(n2))− 2n}n≥0

is bounded above. (In particular, this requires f(n2) 6= 0 for n ≥ 0.)

If f is the (possibly empty) product of linear factors of the form 4n − a2, then it
satisfies the condition. We will prove no other polynomials work. In what follows, assume
f is irreducible and nonconstant.

It suffices to show for every positive integer c, there exists a prime p and a nonnegative
integer n such that n ≤ p−1

2 − c and p divides f(n2).
Firstly, recall there are infinitely many odd primes p, with p > c, such that p divides

some f(n2), by Schur’s Theorem. Looking mod such a p we can find n between 0 and
p−1
2 (since n2 ≡ (−n)2 (mod p)). We claim that only finitely many p from this set can

fail now. For if a p fails, then its n must be between p−1
2 − c and p−1

2 . That means for
some 0 ≤ k ≤ c we have

0 ≡ f

((
p− 1

2
− k
)2
)
≡ f

((
k +

1

2

)2
)

(mod p).

There are only finitely many p dividing

c∏
k=1

f

((
k +

1

2

)2
)

unless one of the terms in the product is zero; this means that 4n− (2k + 1)2 divides
f(n). This establishes the claim and finishes the problem.

5
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§4 USAMO 2006/4, proposed by Ricky Liu

Find all positive integers n for which there exist k ≥ 2 positive rational numbers a1, . . . , ak
satisfying a1 + a2 + · · ·+ ak = a1a2 . . . ak = n.

The answer is all n other than 1, 2, 3, 5.

Claim — The only solution with n ≤ 5 is n = 4.

Proof. The case n = 4 works since 2 + 2 = 2 · 2 = 4. So assume n > 4.
We now contend that k > 2. Indeed, if a1 + a2 = a1a2 = n then (a1 − a2)

2 =
(a1 + a2)

2 − 4a1a2 = n2 − 4n = (n− 2)2 − 4 is a rational integer square, hence a perfect
square. This happens only when n = 4.

Now by AM-GM,
n

k
=
a1 + · · ·+ ak

k
≥ k
√
a1 . . . ak = n1/k

and so n ≥ k
1

1−1/k = k
k

k−1 . This last quantity is always greater than 5, since

33/2 = 3
√

3 > 5

44/3 = 4
3
√

4 > 5

k
k

k−1 > k ≥ 5 ∀k ≥ 5.

This finishes the proof.

Now, in general:

• If n ≥ 6 is even, we may take (a1, . . . , an/2) = (n/2, 2, 1, . . . , 1).

• If n ≥ 9 is odd, we may take (a1, . . . , a(n−3)/2) = (n/2, 1/2, 4, 1, . . . , 1).

• A special case n = 7: one example is (4/3, 7/6, 9/2), another is (7/6, 4/3, 3/2, 3).

Remark. The main hurdle in the problem is the n = 7 case. One good reason to believe a
construction exists is that it seems quite difficult to prove that n = 7 fails.

6
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§5 USAMO 2006/5, proposed by Zoran Sunik

A mathematical frog jumps along the number line. The frog starts at 1, and jumps according to

the following rule: if the frog is at integer n, then it can jump either to n+ 1 or to n+ 2mn+1

where 2mn is the largest power of 2 that is a factor of n. Show that if k ≥ 2 is a positive integer

and i is a nonnegative integer, then the minimum number of jumps needed to reach 2ik is greater

than the minimum number of jumps needed to reach 2i.

We will think about the problem in terms of finite sequences of jumps (s1, s2, . . . , s`),
which we draw as

1 = x0
s1−→ x1

s2−→ x2
s3−→ . . .

s`−→ x`

where sk = xk − xk−1 is the length of some hop. We say the sequence is valid if it has
the property required by the problem: for each k, either sk = 1 or sk = 2mxk−1

+1.
An example is shown below.

Lemma

Let (s1, . . . , s`) be a sequence of jumps. Suppose we delete pick an index k and
exponent e > 0, and delete any jumps after the kth one which are divisible by 2e.
The resulting sequence is still valid.

Proof. We only have to look after the kth jump. The launching points of the remaining
jumps after the kth one are now shifted by multiples of 2e due to the deletions; so given
a jump x

s−→ x+ s we end up with a jump x′
s−→ x′ + s where x− x′ is a multiple of 2e.

But since s < 2e, we have ν2(x′) < e and hence ν2(x) = ν2(x′) so the jump is valid.

1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 248

2

1

8

1

1

4

1

2

2

1

1 2 3 4 5 6 7 8

2

1 1

1 1

1

Now let’s consider a valid path to 2ik with ` steps, say

1 = x0
s1−→ x1

s2−→ x2
s3−→ . . .

s`−→ x` = 2i · k

where si = xi − xi−1 is the distance jumped.
We delete jumps in the following way: starting from the largest e and going downwards

until e = 0, we delete all the jumps of length 2e which end at a point exceeding the target
2i.

By the lemma, at each stage, the path remains valid. We claim more:

Claim — Let e ≥ 0. After the jumps of length greater than 2e are deleted, the
resulting end-point is at least 2i, and divisible by 2min(i,e).

Proof. By downwards induction. Consider any step where some jump is deleted. Then,
the end-point must be strictly greater than x = 2i − 2e (i.e. we must be within 2e of the
target 2i).

7
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It is also divisible by 2min(i,e) by induction hypothesis, since we are changing the
end-point by multiples of 2e. And the smallest multiple of 2min(i,e) exceeding x is 2i.

On the other hand by construction when the process ends the reduced path ends at a
point at most 2i, so it is 2i as desired.

Therefore we have taken a path to 2ik and reduced it to one to 2i by deleting some
jumps. This proves the result.

8
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§6 USAMO 2006/6, proposed by Zuming Feng and Zhonghao
Ye

Let ABCD be a quadrilateral, and let E and F be points on sides AD and BC, respectively,

such that AE
ED = BF

FC . Ray FE meets rays BA and CD at S and T , respectively. Prove that the

circumcircles of triangles SAE, SBF , TCF , and TDE pass through a common point.

A

B C

D

M

E

F

S

T

P

Q

Let M be the Miquel point of ABCD. Then M is the center of a spiral similarity
taking AD to BC. The condition guarantees that it also takes E to F . Hence, we
see that M is the center of a spiral similarity taking AB to EF , and consequently the
circumcircles of QAB, QEF , SAE, SBF concur at point M .

In other words, the Miquel point of ABCD is also the Miquel point of ABFE. Similarly,
M is also the Miquel point of EDCF , so all four circles concur at M .

9
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36th United States of America Mathematical Olympiad

Day I 12:30 PM – 5 PM EDT

April 24, 2007

1. Let n be a positive integer. Define a sequence by setting a1 = n and, for each k > 1,

letting ak be the unique integer in the range 0 ≤ ak ≤ k − 1 for which a1 + a2 + · · · + ak

is divisible by k. For instance, when n = 9 the obtained sequence is 9, 1, 2, 0, 3, 3, 3, . . . .

Prove that for any n the sequence a1, a2, a3, . . . eventually becomes constant.

2. A square grid on the Euclidean plane consists of all points (m,n), where m and n are

integers. Is it possible to cover all grid points by an infinite family of discs with non-

overlapping interiors if each disc in the family has radius at least 5?

3. Let S be a set containing n2 + n− 1 elements, for some positive integer n. Suppose that

the n-element subsets of S are partitioned into two classes. Prove that there are at least

n pairwise disjoint sets in the same class.

Copyright c© Committee on the American Mathematics Competitions,
Mathematical Association of America



36th United States of America Mathematical Olympiad

Day II 12:30 PM – 5 PM EDT

April 25, 2007

4. An animal with n cells is a connected figure consisting of n equal-sized square cells.1 The

figure below shows an 8-cell animal.

A dinosaur is an animal with at least 2007 cells. It is said to be primitive if its cells cannot

be partitioned into two or more dinosaurs. Find with proof the maximum number of cells

in a primitive dinosaur.

5. Prove that for every nonnegative integer n, the number 77n
+ 1 is the product of at least

2n + 3 (not necessarily distinct) primes.

6. Let ABC be an acute triangle with ω, Ω, and R being its incircle, circumcircle, and cir-

cumradius, respectively. Circle ωA is tangent internally to Ω at A and tangent externally

to ω. Circle ΩA is tangent internally to Ω at A and tangent internally to ω. Let PA and QA

denote the centers of ωA and ΩA, respectively. Define points PB, QB, PC , QC analogously.

Prove that

8PAQA · PBQB · PCQC ≤ R3,

with equality if and only if triangle ABC is equilateral.

Copyright c© Committee on the American Mathematics Competitions,
Mathematical Association of America

1Animals are also called polyominoes. They can be defined inductively. Two cells are adjacent if they share a
complete edge. A single cell is an animal, and given an animal with n-cells, one with n + 1 cells is obtained by
adjoining a new cell by making it adjacent to one or more existing cells.



36th United States of America Mathematical Olympiad

1. Let n be a positive integer. Define a sequence by setting a1 = n and, for each k > 1,

letting ak be the unique integer in the range 0 ≤ ak ≤ k − 1 for which a1 + a2 + · · · + ak

is divisible by k. For instance, when n = 9 the obtained sequence is 9, 1, 2, 0, 3, 3, 3, . . . .

Prove that for any n the sequence a1, a2, a3, . . . eventually becomes constant.

First Solution: For k ≥ 1, let

sk = a1 + a2 + · · · + ak.

We have
sk+1

k + 1
<

sk+1

k
=

sk + ak+1

k
≤ sk + k

k
=

sk

k
+ 1.

On the other hand, for each k, sk/k is a positive integer. Therefore

sk+1

k + 1
≤ sk

k
,

and the sequence of quotients sk/k is eventually constant. If sk+1/(k + 1) = sk/k, then

ak+1 = sk+1 − sk =
(k + 1)sk

k
− sk =

sk

k
,

showing that the sequence ak is eventually constant as well.

Second Solution: For k ≥ 1, let

sk = a1 + a2 + · · · + ak and
sk

k
= qk.

Since ak ≤ k − 1, for k ≥ 2, we have

sk = a1 + a2 + a3 + · · · + ak ≤ n + 1 + 2 + · · · + (k − 1) = n +
k(k − 1)

2
.

Let m be a positive integer such that n ≤ m(m+1)
2

(such an integer clearly exists). Then

qm =
sm

m
≤ n

m
+

m − 1

2
≤ m + 1

2
+

m − 1

2
= m.

We claim that

qm = am+1 = am+2 = am+3 = am+4 = . . . .

1



This follows from the fact that the sequence a1, a2, a3, . . . is uniquely determined and

choosing am+i = qm, for i ≥ 1, satisfies the range condition

0 ≤ am+i = qm ≤ m ≤ m + i − 1,

and yields

sm+i = sm + iqm = mqm + iqm = (m + i)qm.

Third Solution: For k ≥ 1, let

sk = a1 + a2 + · · · + ak.

We claim that for some m we have sm = m(m−1). To this end, consider the sequence which

computes the differences between sk and k(k − 1), i.e., whose k-th term is sk − k(k − 1).

Note that the first term of this sequence is positive (it is equal to n) and that its terms

are strictly decreasing since

(sk − k(k − 1)) − (sk+1 − (k + 1)k) = 2k − ak+1 ≥ 2k − k = k ≥ 1.

Further, a negative term cannot immediately follow a positive term. Suppose otherwise,

namely that sk > k(k − 1) and sk+1 < (k + 1)k. Since sk and sk+1 are divisible by

k and k + 1, respectively, we can tighten the above inequalities to sk ≥ k2 and sk+1 ≤
(k+1)(k−1) = k2−1. But this would imply that sk > sk+1, a contradiction. We conclude

that the sequence of differences must eventually include a term equal to zero.

Let m be a positive integer such that sm = m(m − 1). We claim that

m − 1 = am+1 = am+2 = am+3 = am+4 = . . . .

This follows from the fact that the sequence a1, a2, a3, . . . is uniquely determined and

choosing am+i = m − 1, for i ≥ 1, satisfies the range condition

0 ≤ am+i = m − 1 ≤ m + i − 1,

and yields

sm+i = sm + i(m − 1) = m(m − 1) + i(m − 1) = (m + i)(m − 1).

This problem was suggested by Sam Vandervelde.
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2. A square grid on the Euclidean plane consists of all points (m,n), where m and n are

integers. Is it possible to cover all grid points by an infinite family of discs with non-

overlapping interiors if each disc in the family has radius at least 5?

Solution: It is not possible. The proof is by contradiction. Suppose that such a covering

family F exists. Let D(P, ρ) denote the disc with center P and radius ρ. Start with an

arbitrary disc D(O, r) that does not overlap any member of F . Then D(O, r) covers no

grid point. Take the disc D(O, r) to be maximal in the sense that any further enlargement

would cause it to violate the non-overlap condition. Then D(O, r) is tangent to at least

three discs in F . Observe that there must be two of the three tangent discs, say D(A, a)

and D(B, b), such that ∠AOB ≤ 120◦. By the Law of Cosines applied to triangle ABO,

(a + b)2 ≤ (a + r)2 + (b + r)2 + (a + r)(b + r),

which yields

ab ≤ 3(a + b)r + 3r2, and thus 12r2 ≥ (a − 3r)(b − 3r).

Note that r < 1/
√

2 because D(O, r) covers no grid point, and (a−3r)(b−3r) ≥ (5−3r)2

because each disc in F has radius at least 5. Hence 2
√

3r ≥ (5 − 3r), which gives 5 ≤
(3+2

√
3)r < (3+2

√
3)/

√
2 and thus 5

√
2 < 3+2

√
3. Squaring both sides of this inequality

yields 50 < 21 + 12
√

3 < 21 + 12 · 2 = 45. This contradiction completes the proof.

Remark: The above argument shows that no covering family exists where each disc has

radius greater than (3 + 2
√

3)/
√

2 ≈ 4.571. In the other direction, there exists a covering

family in which each disc has radius
√

13/2 ≈ 1.802. Take discs with this radius centered

at points of the form (2m + 4n + 1
2
, 3m + 1

2
), where m and n are integers. Then any grid

point is within
√

13/2 of one of the centers and the distance between any two centers is

at least
√

13. The extremal radius of a covering family is unknown.

This problem was suggested by Gregory Galperin.

3. Let S be a set containing n2 + n − 1 elements, for some positive integer n. Suppose that

the n-element subsets of S are partitioned into two classes. Prove that there are at least

n pairwise disjoint sets in the same class.

Solution: In order to apply induction, we generalize the result to be proved so that it

reads as follows:

3



Proposition. If the n-element subsets of a set S with (n+1)m−1 elements are partitioned

into two classes, then there are at least m pairwise disjoint sets in the same class.

Proof. Fix n and proceed by induction on m. The case of m = 1 is trivial. Assume

m > 1 and that the proposition is true for m − 1. Let P be the partition of the n-

element subsets into two classes. If all the n-element subsets belong to the same class, the

result is obvious. Otherwise select two n-element subsets A and B from different classes

so that their intersection has maximal size. It is easy to see that |A ∩ B| = n − 1. (If

|A∩B| = k < n−1, then build C from B by replacing some element not in A∩B with an

element of A not already in B. Then |A∩C| = k+1 and |B∩C| = n−1 and either A and

C or B and C are in different classes.) Removing A∪B from S, there are (n+1)(m−1)−1

elements left. On this set the partition induced by P has, by the inductive hypothesis,

m − 1 pairwise disjoint sets in the same class. Adding either A or B as appropriate gives

m pairwise disjoint sets in the same class.

Remark: The value n2 + n − 1 is sharp. A set S with n2 + n − 2 elements can be split

into a set A with n2 − 1 elements and a set B of n − 1 elements. Let one class consist of

all n-element subsets of A and the other consist of all n-element subsets that intersect B.

Then neither class contains n pairwise disjoint sets.

This problem was suggested by András Gyárfás.

4. An animal with n cells is a connected figure consisting of n equal-sized square cells.1 The

figure below shows an 8-cell animal.

A dinosaur is an animal with at least 2007 cells. It is said to be primitive if its cells cannot

be partitioned into two or more dinosaurs. Find with proof the maximum number of cells

in a primitive dinosaur.

1Animals are also called polyominoes. They can be defined inductively. Two cells are adjacent if they share a

complete edge. A single cell is an animal, and given an animal with n-cells, one with n + 1 cells is obtained by

adjoining a new cell by making it adjacent to one or more existing cells.

4



Solution: Let s denote the minimum number of cells in a dinosaur; the number this year

is s = 2007.

Claim: The maximum number of cells in a primitive dinosaur is 4(s − 1) + 1.

First, a primitive dinosaur can contain up to 4(s − 1) + 1 cells. To see this, consider a

dinosaur in the form of a cross consisting of a central cell and four arms with s − 1 cells

apiece. No connected figure with at least s cells can be removed without disconnecting

the dinosaur.

The proof that no dinosaur with at least 4(s−1)+2 cells is primitive relies on the following

result.

Lemma. Let D be a dinosaur having at least 4(s − 1) + 2 cells, and let R (red) and B

(black) be two complementary animals in D, i.e., R ∩ B = ∅ and R ∪ B = D. Suppose

|R| ≤ s − 1. Then R can be augmented to produce animals R̃ ⊃ R and B̃ = D \ R̃ such

that at least one of the following holds:

(i) |R̃| ≥ s and |B̃| ≥ s,

(ii) |R̃| = |R| + 1,

(iii) |R| < |R̃| ≤ s − 1.

Proof. If there is a black cell adjacent to R that can be made red without disconnecting B,

then (ii) holds. Otherwise, there is a black cell c adjacent to R whose removal disconnects

B. Of the squares adjacent to c, at least one is red, and at least one is black, otherwise

B would be disconnected. Then there are at most three resulting components C1, C2, C3

of B after the removal of c. Without loss of generality, C3 is the largest of the remaining

components. (Note that C1 or C2 may be empty.) Now C3 has at least ⌈(3s − 2)/3⌉ = s

cells. Let B̃ = C3. Then |R̃| = |R| + |C1| + |C2| + 1. If |B̃| ≤ 3s − 2, then |R̃| ≥ s and

(i) holds. If |B̃| ≥ 3s − 1 then either (ii) or (iii) holds, depending on whether |R̃| ≥ s or

not.

Starting with |R| = 1, repeatedly apply the Lemma. Because in alternatives (ii) and (iii)

|R| increases but remains less than s, alternative (i) eventually must occur. This shows

that no dinosaur with at least 4(s − 1) + 2 cells is primitive.

This problem was suggested by Reid Barton.
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5. Prove that for every nonnegative integer n, the number 77n

+ 1 is the product of at least

2n + 3 (not necessarily distinct) primes.

Solution: The proof is by induction. The base is provided by the n = 0 case, where

770

+ 1 = 71 + 1 = 23. To prove the inductive step, it suffices to show that if x = 72m−1

for some positive integer m then (x7 + 1)/(x + 1) is composite. As a consequence, x7 + 1

has at least two more prime factors than does x + 1. To confirm that (x7 + 1)/(x + 1) is

composite, observe that

x7 + 1

x + 1
=

(x + 1)7 − ((x + 1)7 − (x7 + 1))

x + 1

= (x + 1)6 − 7x(x5 + 3x4 + 5x3 + 5x2 + 3x + 1)

x + 1

= (x + 1)6 − 7x(x4 + 2x3 + 3x2 + 2x + 1)

= (x + 1)6 − 72m(x2 + x + 1)2

= {(x + 1)3 − 7m(x2 + x + 1)}{(x + 1)3 + 7m(x2 + x + 1)}

Also each factor exceeds 1. It suffices to check the smaller one;
√

7x ≤ x gives

(x + 1)3 − 7m(x2 + x + 1) = (x + 1)3 −
√

7x(x2 + x + 1)

≥ x3 + 3x2 + 3x + 1 − x(x2 + x + 1)

= 2x2 + 2x + 1 ≥ 113 > 1.

Hence (x7 + 1)/(x + 1) is composite and the proof is complete.

This problem was suggested by Titu Andreescu.

6. Let ABC be an acute triangle with ω, Ω, and R being its incircle, circumcircle, and cir-

cumradius, respectively. Circle ωA is tangent internally to Ω at A and tangent externally

to ω. Circle ΩA is tangent internally to Ω at A and tangent internally to ω. Let PA and QA

denote the centers of ωA and ΩA, respectively. Define points PB, QB, PC , QC analogously.

Prove that

8PAQA · PBQB · PCQC ≤ R3,

6



with equality if and only if triangle ABC is equilateral.

Solution: Let the incircle touch the sides AB,BC, and CA at C1, A1, and B1, respectively.

Set AB = c, BC = a, CA = b. By equal tangents, we may assume that AB1 = AC1 = x,

BC1 = BA1 = y, and CA1 = CB1 = z. Then a = y + z, b = z + x, c = x + y. By the

AM-GM inequality, we have a ≥ 2
√

yz, b ≥ 2
√

zx, and c ≥ 2
√

xy. Multiplying the last

three inequalities yields

abc ≥ 8xyz, (†),

with equality if and only if x = y = z; that is, triangle ABC is equilateral.

Let k denote the area of triangle ABC. By the Extended Law of Sines, c = 2R sin ∠C.

Hence

k =
ab sin ∠C

2
=

abc

4R
or R =

abc

4k
. (‡)

We are going to show that

PAQA =
xa2

4k
. (∗)

In exactly the same way, we can also establish its cyclic analogous forms

PBQB =
yb2

4k
and PCQC =

zc2

4k
.

Multiplying the last three equations together gives

PAQA · PBQB · PCQC =
xyza2b2c2

64k3
.

Further considering (†) and (‡), we have

8PAQA · PBQB · PCQC =
8xyza2b2c2

64k3
≤ a3b3c3

64k3
= R3,

with equality if and only if triangle ABC is equilateral.

Hence it suffices to show (∗). Let r, rA, r′A denote the radii of ω, ωA, ΩA, respectively. We

consider the inversion I with center A and radius x. Clearly, I(B1) = B1, I(C1) = C1, and

I(ω) = ω. Let ray AO intersect ωA and ΩA at S and T , respectively. It is not difficult to see

that AT > AS, because ω is tangent to ωA and ΩA externally and internally, respectively.

Set S1 = I(S) and T1 = I(T ). Let ℓ denote the line tangent to Ω at A. Then the image

of ωA (under the inversion) is the line (denoted by ℓ1) passing through S1 and parallel

to ℓ, and the image of ΩA is the line (denoted by ℓ2) passing through T1 and parallel to

7



ℓ. Furthermore, since ω is tangent to both ωA and ΩA, ℓ1 and ℓ2 are also tangent to the

image of ω, which is ω itself. Thus the distance between these two lines is 2r; that is,

S1T1 = 2r. Hence we can consider the following configuration. (The darkened circle is ωA,

and its image is the darkened line ℓ1.)

A

B C

PA

QA

I

HA

A1

B1

C1

O

S

T

S1

T1

l

l1

l2

By the definition of inversion, we have AS1 · AS = AT1 · AT = x2. Note that AS = 2rA,

AT = 2r′A, and S1T1 = 2r. We have

rA =
x2

2AS1

. and r′A =
x2

2AT1

=
x2

2(AS1 − 2r)
.

Hence

PAQA = AQA − APA = r′A − rA =
x2

2

(

1

AS1 − 2r
+

1

AS1

)

.

Let HA be the foot of the perpendicular from A to side BC. It is well known that

∠BAS1 = ∠BAO = 90◦ − ∠C = ∠CAHA. Since ray AI bisects ∠BAC, it follows that

rays AS1 and AHA are symmetric with respect to ray AI. Further note that both line ℓ1

8



(passing through S1) and line BC (passing through HA) are tangent to ω. We conclude

that AS1 = AHA. In light of this observation and using the fact 2k = AHA · BC =

(AB + BC + CA)r, we can compute PAQA as follows:

PAQA =
x2

2

(

1

AHA − 2r
− 1

AHA

)

=
x2

4k

(

2k

AHA − 2r
− 2k

AHA

)

=
x2

4k

(

1
1

BC
− 2

AB+BC+CA

− BC

)

=
x2

4k

(

1
1

y+z
− 1

x+y+z

− (y + z)

)

=
x2

4k

(

(y + z)(x + y + z)

x
− (y + z)

)

=
x(y + z)2

4k
=

xa2

4k
,

establishing (∗). Our proof is complete.

Note: Trigonometric solutions of (∗) are also possible.

Query: For a given triangle, how can one construct ωA and ΩA by ruler and compass?

This problem was suggested by Kiran Kedlaya and Sungyoon Kim.

Copyright c© Committee on the American Mathematics Competitions,

Mathematical Association of America
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USAMO 2007 Solution Notes web.evanchen.cc, updated April 17, 2020

§0 Problems

1. Let n be a positive integer. Define a sequence by setting a1 = n and, for each
k > 1, letting ak be the unique integer in the range 0 ≤ ak ≤ k − 1 for which
a1 +a2 + · · ·+ak is divisible by k. (For instance, when n = 9 the obtained sequence
is 9, 1, 2, 0, 3, 3, 3, . . . .) Prove that for any n the sequence a1, a2, . . . eventually
becomes constant.

2. Decide whether it possible to cover all lattice points in R2 by an (infinite) family of
disks whose interiors are disjoint such that the radius of each disk is at least 5.

3. Let S be a set containing n2 + n− 1 elements. Suppose that the n-element subsets
of S are partitioned into two classes. Prove that there are at least n pairwise
disjoint sets in the same class.

4. An animal with n cells is a connected figure consisting of n equal-sized square cells
(equivalently, a polyomino with n cells). A dinosaur is an animal with at least 2007
cells. It is said to be primitive it its cells cannot be partitioned into two or more
dinosaurs. Find with proof the maximum number of cells in a primitive dinosaur.

5. Prove that for every nonnegative integer n, the number 77
n

+ 1 is the product of at
least 2n + 3 (not necessarily distinct) primes.

6. Let ABC be an acute triangle with ω, S, and R being its incircle, circumcircle, and
circumradius, respectively. Circle ωA is tangent internally to S at A and tangent
externally to ω. Circle SA is tangent internally to S at A and tangent internally to
ω.

Let PA and QA denote the centers of ωA and SA, respectively. Define points PB,
QB, PC , QC analogously. Prove that

8PAQA · PBQB · PCQC ≤ R3

with equality if and only if triangle ABC is equilateral.

2
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§1 USAMO 2007/1, proposed by Sam Vandervelde

Let n be a positive integer. Define a sequence by setting a1 = n and, for each k > 1, letting ak
be the unique integer in the range 0 ≤ ak ≤ k − 1 for which a1 + a2 + · · ·+ ak is divisible by k.

(For instance, when n = 9 the obtained sequence is 9, 1, 2, 0, 3, 3, 3, . . . .) Prove that for any n the

sequence a1, a2, . . . eventually becomes constant.

For each k, the number

bk
def
=

1

k
(a1 + · · ·+ ak)

is a nonnegative integer. Moreover, since

bk+1 =
a1 + · · ·+ ak + ak+1

k + 1
<

kbk + k

k + 1
< bk

the sequence bk must eventually be constant. This can only happen once the sequence is
constant.

3
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§2 USAMO 2007/2, proposed by Gregory Galperin

Decide whether it possible to cover all lattice points in R2 by an (infinite) family of disks whose

interiors are disjoint such that the radius of each disk is at least 5.

The answer is no.
Assume not. Take a disk �O not touching any member of the family, and then enlarge

it until it is maximal. Then, it must be tangent to at least three other disks, say �A,
�B, �C. Suppose WLOG that ∠AOB ≤ 120◦. Denote the radii of �O, �A, �B by r,
a, b.

But the Law of Cosines gives

(a + b)2 ≤ (a + r)2 + (b + r)2 + (a + r)(b + r)

which rewrites as
12r2 ≥ (a− 3r)(b− 3r) ≥ (5− 3r)2

which one can check is impossible for r ≤ 1/
√

2. Thus r > 1/
√

2.
In particular (�O) must contain a lattice point as it contains a unit square.

Remark. The order of the argument here matters in subtle ways. A common approach is
to try and reduce to the “optimal” case where we have three mutually tangent circles, and
then apply the Descarte circle theorem. There are ways in which this approach can fail if
the execution is not done with care. (In particular, one cannot simply say to reduce to this
case, without some justification.)

For example: it is not true that, given an infinite family of disks, we can enlarge disks
until we get three mutually tangent ones. As a counterexample consider the “square grid”
in which a circle is centered at (10m, 10n) for each m,n ∈ Z and has radius 5. Thus it is
also not possible to simply pick three nearby circles and construct a circle tangent to all
three: that newly constructed circle might intersect a fourth disk not in the picture.

Thus, when constructing the small disk �O in the above solution, it seems easiest to start
with a point not covered and grow �O until it is tangent to some three circles, and then
argue by cosine law. Otherwise it not easy to determine which three circles to start with.

In all solutions it seems easier to prove that a disjoint circle of radius 1/
√

2 exists, and
then finally deduce it has a lattice point, rather than trying to work the lattice point into
the existence proof.

4
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§3 USAMO 2007/3, proposed by Andras Gyarfas

Let S be a set containing n2 + n − 1 elements. Suppose that the n-element subsets of S are

partitioned into two classes. Prove that there are at least n pairwise disjoint sets in the same

class.

We present two solutions which are really equivalent, but phrased differently. We refer
to the two classes as “red” and “blue”, respectively.

First solution (Grant Yu) We define a set of n + 1 elements to be useful if it has
n-element subsets in each class.

Consider a maximal collection of disjoint useful sets and assume there are p
such sets. Then, let T be the set of elements remaining (i.e. not in one of chosen useful
sets).

Claim — All subsets of T of size n are the same color.

Proof. Assume there was a red set R in T . Replace the elements of R one by one until
we get to any other subset R′ of T . At each step, because no sets of T form a useful set,
the set remains red — so R′ is red too. Since R′ is arbitrary, this proves the claim.

We have |T | = n2 + n− 1− p(n + 1), and in particular p < n. WLOG all sets in T are
red. We can extract another red set from each of our chosen useful sets. So we can get
at least

p +

⌊
|T |
n

⌋
= p +

⌊
n + 1− p− 1 + p

n

⌋
≥ p + (n− p) = n.

Second solution (by induction) We prove more strongly that:

Claim — Let S be a set containing k · (n + 1)− 1 elements. Then we can find k
pairwise disjoint sets of the same color.

The proof is by induction on k ≥ 1. The base case k = 1 this is immediate;
(
S
n

)
is a single

set.
For the inductive step, assume for contradiction the problem fails. Let T be any subset

of S of size (k− 1)(n+ 1)− 1. By the induction hypothesis, among the subsets of T alone,
we can already find k − 1 pairwise disjoint sets of the same color. Now S \ T has size
k + 1, and so we would have to have that all

(
k+1
k

)
subsets of S \ T are the same color.

By varying T , the set S \ T ranges over all of
(

S
k+1

)
. This causes all sets to be the

same color, contradiction.

Remark. Victor Wang writes the following:

I don’t really like this problem, but I think the main motivation for generalizing
the problem is that the original problem doesn’t allow you to look at small
cases. (Also, it’s not initially clear where the n2 + n − 1 comes from.) And
pretty much the simplest way to get lots of similarly-flavored small cases is to
start with k = 2, 3 in “find the smallest N(n, k) such that when we partition
the n-subsets of a ≥ N(n, k)-set into 2 classes, we can find some k pairwise
disjoint sets in the same class”.
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§4 USAMO 2007/4, proposed by Reid Barton

An animal with n cells is a connected figure consisting of n equal-sized square cells (equivalently,

a polyomino with n cells). A dinosaur is an animal with at least 2007 cells. It is said to be

primitive it its cells cannot be partitioned into two or more dinosaurs. Find with proof the

maximum number of cells in a primitive dinosaur.

In fact it’s true for any tree with maximum degree ≤ 4. Here is the solution of Andrew
Geng.

Let T be such a tree (a spanning tree of the dinosaur graph).

Claim — There exists a vertex v such that when v is deleted, no dinosaurs result.

Proof. Assume for contradiction that all vertices are bad (leave a dinosaur when deleted).
Consider two adjacent vertices v, w in T . By checking possibilities, one sees that, say,
the dinosaur in T − v contains w and the dinosaur of T − w. We can repeat in this way;
since T is acyclic, this eventually becomes a contradiction.

When this vertex is deleted, we get at most 4 components, each with ≤ 2006 vertices,
giving the answer of 4 · 2006 + 1 = 8025. The construction is easy (take a “cross”, for
example).

6
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§5 USAMO 2007/5, proposed by Titu Andreescu

Prove that for every nonnegative integer n, the number 77
n

+ 1 is the product of at least 2n + 3

(not necessarily distinct) primes.

We prove this by induction on n by showing that

X7 + 1

X + 1
= X6 −X5 + · · ·+ 1

is never prime for X = 77
n
, hence we gain at least two additional prime factors whenever

we increase n by one.
Indeed, the quotient may be written as

(X + 1)6 − 7X · (X2 + X + 1)2

which becomes a difference of squares, hence composite.
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§6 USAMO 2007/6, proposed by Sung-Yoon Kim

Let ABC be an acute triangle with ω, S, and R being its incircle, circumcircle, and circumradius,
respectively. Circle ωA is tangent internally to S at A and tangent externally to ω. Circle SA is
tangent internally to S at A and tangent internally to ω.

Let PA and QA denote the centers of ωA and SA, respectively. Define points PB , QB , PC , QC

analogously. Prove that
8PAQA · PBQB · PCQC ≤ R3

with equality if and only if triangle ABC is equilateral.

It turns out we can compute PAQA explicitly. Let us invert around A with radius
s− a (hence fixing the incircle) and then compose this with a reflection around the angle
bisector of ∠BAC. We denote the image of the composed map via

• 7→ •∗ 7→ •+.

We overlay this inversion with the original diagram.
Let PAQA meet ωA again at P and SA again at Q. Now observe that ω∗A is a line

parallel to S∗; that is, it is perpendicular to PQ. Moreover, it is tangent to ω∗ = ω.
Now upon the reflection, we find that ω+ = ω∗ = ω, but line PQ gets mapped to

the altitude from A to BC, since PQ originally contained the circumcenter O (isogonal
to the orthocenter). But this means that ω∗A is none other than the BC! Hence P+ is
actually the foot of the altitude from A onto BC.

By similar work, we find that Q+ is the point on AP+ such that P+Q+ = 2r.

A

B CP+

PA

P

QA

Q

I
P ∗

Q+

Now we can compute all the lengths directly. We have that

APA =
1

2
AP =

(s− a)2

2AP+
=

1

2
(s− a)2 · 1

ha

and

AQA =
1

2
AQ =

(s− a)2

2AQ+
=

1

2
(s− a)2 · 1

ha − 2r

8
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where ha = 2K
a is the length of the A-altitude, with K the area of ABC as usual. Now it

follows that

PAQA =
1

2
(s− a)2

(
2r

ha(ha − 2r)

)
.

This can be simplified, as

ha − 2r =
2K

a
− 2K

s
= 2K · s− a

as
.

Hence

PAQA =
a2rs(s− a)

4K2
=

a2(s− a)

4K
.

Hence, the problem is just asking us to show that

a2b2c2(s− a)(s− b)(s− c) ≤ 8(RK)3.

Using abc = 4RK and (s− a)(s− b)(s− c) = 1
sK

2 = rK, we find that this becomes

2(s− a)(s− b)(s− c) ≤ RK ⇐⇒ 2r ≤ R

which follows immediately from IO2 = R(R− 2r). Alternatively, one may rewrite this as
Schur’s Inequality in the form

abc ≥ (−a + b + c)(a− b + c)(a + b− c).

9

http://web.evanchen.cc


37th United States of America Mathematical Olympiad

Day I 12:30 PM – 5 PM EDT

April 29, 2008

1. Prove that for each positive integer n, there are pairwise relatively prime integers k0, k1, . . . ,

kn, all strictly greater than 1, such that k0k1 · · · kn − 1 is the product of two consecutive

integers.

2. Let ABC be an acute, scalene triangle, and let M, N , and P be the midpoints of BC, CA,

and AB, respectively. Let the perpendicular bisectors of AB and AC intersect ray AM

in points D and E respectively, and let lines BD and CE intersect in point F , inside of

triangle ABC. Prove that points A, N, F , and P all lie on one circle.

3. Let n be a positive integer. Denote by Sn the set of points (x, y) with integer coordinates

such that

|x|+
∣∣∣∣y +

1

2

∣∣∣∣ < n.

A path is a sequence of distinct points (x1, y1), (x2, y2), . . . , (x`, y`) in Sn such that, for

i = 2, . . . , `, the distance between (xi, yi) and (xi−1, yi−1) is 1 (in other words, the points

(xi, yi) and (xi−1, yi−1) are neighbors in the lattice of points with integer coordinates).

Prove that the points in Sn cannot be partitioned into fewer than n paths (a partition of

Sn into m paths is a set P of m nonempty paths such that each point in Sn appears in

exactly one of the m paths in P).

Copyright c© Committee on the American Mathematics Competitions,
Mathematical Association of America



37th United States of America Mathematical Olympiad

Day II 12:30 PM – 5 PM EDT

April 30, 2008

4. Let P be a convex polygon with n sides, n ≥ 3. Any set of n−3 diagonals of P that do not

intersect in the interior of the polygon determine a triangulation of P into n− 2 triangles.

If P is regular and there is a triangulation of P consisting of only isosceles triangles, find

all the possible values of n.

5. Three nonnegative real numbers r1, r2, r3 are written on a blackboard. These numbers have

the property that there exist integers a1, a2, a3, not all zero, satisfying a1r1+a2r2+a3r3 = 0.

We are permitted to perform the following operation: find two numbers x, y on the

blackboard with x ≤ y, then erase y and write y − x in its place. Prove that after a finite

number of such operations, we can end up with at least one 0 on the blackboard.

6. At a certain mathematical conference, every pair of mathematicians are either friends or

strangers. At mealtime, every participant eats in one of two large dining rooms. Each

mathematician insists upon eating in a room which contains an even number of his or her

friends. Prove that the number of ways that the mathematicians may be split between

the two rooms is a power of two (i.e., is of the form 2k for some positive integer k).

Copyright c© Committee on the American Mathematics Competitions,
Mathematical Association of America



37th United States of America Mathematical Olympiad

1. Prove that for each positive integer n, there are pairwise relatively prime integers k0, k1, . . . , kn,

all strictly greater than 1, such that k0k1 · · · kn − 1 is the product of two consecutive inte-

gers.

First solution: We proceed by induction. The case n = 1 is clear, since we may pick

k0 = 3 and k1 = 7.

Let us assume now that for a certain n there are pairwise relatively prime integers 1 <

k0 < k1 < · · · < kn such that k0k1 · · · kn − 1 = an(an − 1), for some positive integer an.

Then choosing kn+1 = a2
n + an + 1 yields

k0k1 · · · kn+1 = (a2
n − an + 1)(a2

n + an + 1) = a4
n + a2

n + 1,

so k0k1 · · · kn+1−1 is the product of the two consecutive integers a2
n and a2

n +1. Moreover,

gcd(k0k1 · · · kn, kn+1) = gcd(a2
n − an + 1, a2

n + an + 1) = 1,

hence k0, k1, . . . , kn+1 are pairwise relatively prime. This completes the proof.

Second solution: Write the relation to be proved as

4k0k1 · · · kn = 4a(a + 1) + 4 = (2a + 1)2 + 3.

There are infinitely many primes for which −3 is a quadratic residue. Let 2 < p0 < p1 <

. . . < pn be such primes. Using the Chinese Remainder Theorem to specify a modulo pn,

we can find an integer a such that (2a+1)2+3 = 4p0p1 · · · pnm for some positive integer m.

Grouping the factors of m appropriately with the pi’s, we obtain (2a+1)2+3 = 4k0k1 · · · kn

with ki pairwise relatively prime. We then have k0k1 · · · kn − 1 = a(a + 1), as desired.

Third solution: We are supposed to show that for every positive integer n, there is a

positive integer x such that x(x+1)+1 = x2 +x+1 has at least n distinct prime divisors.

We can actually prove a more general statement.

Claim. Let P (x) = adx
d + · · · + a1x + 1 be a polynomial of degree d ≥ 1 with integer

coefficients. Then for every positive integer n, there is a positive integer x such that P (x)

has at least n distinct prime divisors.
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The proof follows from the following two lemmas.

Lemma 1. The set

Q = {p | p a prime for which there is an integer x such that p divides P (x)}

is infinite.

Proof. The proof is analogous to Euclid’s proof that there are infinitely many primes.

Namely, if we assume that there are only finitely many primes p1, p2, . . . , pk in Q, then for

each integer m, P (mp1p2 · · · pk) is an integer with no prime factors, which must equal 1

or −1. However, since P has degree d ≥ 1, it takes each of the values 1 and −1 at most d

times, a contradiction.

Lemma 2. Let p1, p2, . . . , pn, n ≥ 1 be primes in Q. Then there is a positive integer x

such that P (x) is divisible by p1p2 · · · pn.

Proof. For i = 1, 2, . . . , n, since pi ∈ Q we can find an integer ci such that P (x) is

divisible by pi whenever x ≡ ci(mod pi). By the Chinese Remainder Theorem, the system

of n congruences x ≡ ci(mod pi), i = 1, 2, . . . , n has positive integer solutions. For every

positive integer x that solves this system, P (x) is divisible by p1p2 · · · pn.

This problem was suggested by Titu Andreescu.

2. Let ABC be an acute, scalene triangle, and let M, N , and P be the midpoints of BC, CA,

and AB, respectively. Let the perpendicular bisectors of AB and AC intersect ray AM

in points D and E respectively, and let lines BD and CE intersect in point F , inside of

triangle ABC. Prove that points A, N, F , and P all lie on one circle.

First solution: Let O be the circumcenter of triangle ABC. We prove that

∠APO = ∠ANO = ∠AFO = 90◦. (1)

It will then follow that A, P, O, F, N lie on the circle with diameter AO. Indeed, the

fact that the first two angles in (1) are right is immediate because OP and ON are

the perpendicular bisectors of AB and AC, respectively. Thus we need only prove that

∠AFO = 90◦.

2



A

B
C

D
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F

M
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A
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D

E

F
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N

A

B
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D

E

F

M
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P

O

A

B C

D

E

F

M

P

O

N

We may assume, without loss of generality, that AB > AC. This leads to configurations

similar to the ones shown above. The proof can be adapted to other configurations.

Because PO is the perpendicular bisector of AB, it follows that triangle ADB is an

isosceles triangle with AD = BD. Likewise, triangle AEC is isosceles with AE = CE.

Let x = ∠ABD = ∠BAD and y = ∠CAE = ∠ACE, so x + y = ∠BAC.
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Applying the Law of Sines to triangles ABM and ACM gives

BM

sin x
=

AB

sin ∠BMA
and

CM

sin y
=

AC

sin ∠CMA
.

Taking the quotient of the two equations and noting that sin ∠BMA = sin ∠CMA we

find
BM

CM

sin y

sin x
=

AB

AC

sin ∠CMA

sin ∠BMA
=

AB

AC
.

Because BM = MC, we have
sin x

sin y
=

AC

AB
. (2)

Applying the law of sines to triangles ABF and ACF we find

AF

sin x
=

AB

sin ∠AFB
and

AF

sin y
=

AC

sin ∠AFC
.

Taking the quotient of the two equations yields

sin x

sin y
=

AC

AB

sin ∠AFB

sin ∠AFC
, so by (2), sin ∠AFB = sin ∠AFC. (3)

Because ∠ADF is an exterior angle to triangle ADB, we have ∠EDF = 2x. Similarly,

∠DEF = 2y. Hence

∠EFD = 180◦ − 2x− 2y = 180◦ − 2∠BAC.

Thus ∠BFC = 2∠BAC = ∠BOC, so BOFC is cyclic. In addition,

∠AFB + ∠AFC = 360◦ − 2∠BAC > 180◦,

and hence, from (3), ∠AFB = ∠AFC = 180◦ − ∠BAC. Because BOFC is cyclic and

4BOC is isosceles with vertex angle ∠BOC = 2∠BAC, we have ∠OFB = ∠OCB =

90◦ − ∠BAC. Therefore,

∠AFO = ∠AFB − ∠OFB = (180◦ − ∠BAC)− (90◦ − ∠BAC) = 90◦.

This completes the proof.

Second solution: Invert the figure about a circle centered at A, and let X ′ denote

the image of the point X under this inversion. Find point F ′
1 so that AB′F ′

1C
′ is a

parallelogram and let Z ′ denote the center of this parallelogram. Note that 4BAC ∼

4



4C ′AB′ and 4BAD ∼ 4D′AB′. Because M is the midpoint of BC and Z ′ is the

midpoint of B′C ′, we also have 4BAM ∼ 4C ′AZ ′. Thus

∠AF ′
1B

′ = ∠F ′
1AC ′ = ∠Z ′AC ′ = ∠MAB = ∠DAB = ∠DBA = ∠AD′B′.

Hence quadrilateral AB′D′F ′
1 is cyclic and, by a similar argument, quadrilateral AC ′E ′F ′

1

is also cyclic. Because the images under the inversion of lines BDF and CFE are circles

that intersect in A and F ′, it follows that F ′
1 = F ′.

Next note that B′, Z ′, and C ′ are collinear and are the images of P ′, F ′, and N ′, respec-

tively, under a homothety centered at A and with ratio 1/2. It follows that P ′, F ′ and N ′

are collinear, and then that the points A, P, F and N lie on a circle.

B
M C

D

E

F

P

P'

N'

Z'

B'

C'

F'1

N

A

This problem was suggested by Zuming Feng. The second solution was contributed by

Gabriel Carroll.

3. Let n be a positive integer. Denote by Sn the set of points (x, y) with integer coordinates

such that

|x|+
∣∣∣∣y +

1

2

∣∣∣∣ < n.

A path is a sequence of distinct points (x1, y1), (x2, y2), . . . , (x`, y`) in Sn such that, for

i = 2, . . . , `, the distance between (xi, yi) and (xi−1, yi−1) is 1 (in other words, the points

(xi, yi) and (xi−1, yi−1) are neighbors in the lattice of points with integer coordinates).

5



Prove that the points in Sn cannot be partitioned into fewer than n paths (a partition of

Sn into m paths is a set P of m nonempty paths such that each point in Sn appears in

exactly one of the m paths in P).

Solution: Color the points in Sn as follows (see Figure 1):

- if y ≥ 0, color (x, y) white if x + y − n is even and black if x + y − n is odd;

- if y < 0, color (x, y) white if x + y − n is odd and black if x + y − n is even.

•
(0,2)

•
(−1,1)

◦
(0,1)

•
(1,1)

•
(−2,0)

◦
(−1,0)

•
(0,0)

◦
(1,0)

•
(2,0)

•
(−2,−1)

◦
(−1,−1)

•
(0,−1)

◦
(1,−1)

•
(2,−1)

•
(−1,−2)

◦
(0,−2)

•
(1,−2)

•(0,−3)

Figure 1: Coloring of S3

Consider a path (x1, y1), (x2, y2), . . . , (x`, y`) in Sn. A pair of successive points (xi−1, yi−1)

and (xi, yi) in the path is called a pair of successive black points if both points in the pair

are colored black.

Suppose now that the points of Sn are partitioned into m paths and the total number of

successive pairs of black points in all paths is k. By breaking the paths at each pair of

successive black points, we obtain k+m paths in each of which the number of black points

exceeds the number of white points by at most one. Therefore, the total number of black

points in Sn cannot exceed the number of white points by more than k + m. On the other

hand, the total number of black points in Sn exceeds the total number of white points by

exactly 2n (there is exactly one more black point in each row of Sn). Therefore,

2n ≤ k + m.
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There are exactly n adjacent black points in Sn (call two points in Sn adjacent if their

distance is 1), namely the pairs

(x, 0) and (x,−1),

for x = −n+1,−n+3, . . . , n−3, n−1. Therefore k ≤ n (the number of successive pairs of

black points in the paths in the partition of Sn cannot exceed the total number of adjacent

pairs of black points in Sn) and we have 2n ≤ k + m ≤ n + m, yielding

n ≤ m.

This problem was suggested by Gabriel Carroll.

4. Let P be a convex polygon with n sides, n ≥ 3. Any set of n−3 diagonals of P that do not

intersect in the interior of the polygon determine a triangulation of P into n− 2 triangles.

If P is regular and there is a triangulation of P consisting of only isosceles triangles, find

all the possible values of n.

Solution: The answer is n = 2m+1 +2k, where m and k are nonnegative integers. In other

words, n is either a power of 2 (when m + 1 = k) or the sum of two nonequal powers of 2

(with 1 = 20 being considered as a power of 2).

We start with the following observation.

Lemma. Let Q = Q0Q1 . . . Qt be a convex polygon with Q0Q1 = Q1Q2 = · · · = Qt−1Qt.

Suppose that Q is cyclic and its circumcenter does not lie in its interior. If there is a

triangulation of Q consisting only of isosceles triangles, then t = 2a, where a is a positive

integer.

Proof. We call an arc minor if its arc measure is less than or equal to 180◦. By the given

conditions, points Q1, . . . , Qt−1 lie on the minor arc Q̂0Qt of the circumcircle, so none of

the angles QiQjQk (0 ≤ i < j < k ≤ t) is acute. (See the left-hand side diagram shown

below.) It is not difficult to see that Q0Qt is longer than each other side or diagonal of Q.

Thus Q0Qt must be the base of an isosceles triangle in the triangulation of Q. Therefore, t

must be even. We write t = 2s. Then Q0QsQt is an isosceles triangle in the triangulation.

We can apply the same process to polygon Q0Q1 . . . Qs and show that s is even. Repeating

this process leads to the conclusion that t = 2a for some positive integer a.

7



The results of the lemma can be generalized by allowing a = 0 if we consider the degenerate

case Q = Q0Q1.

Q0

P1

P1

P9P11 P5

P13

Qs

Q t

We are ready to prove our main result. Let P = P1P2 . . . Pn denote the regular polygon.

There is an isosceles triangle in the triangulation such that the center of P lies within the

boundary of the triangle. Without loss of generality, we may assume that P1PiPj, with

P1Pi = P1Pj (that is, Pj = Pn−i+2), is this triangle. Applying the Lemma to the polygons

P1 . . . Pi, Pi . . . Pj, and Pj . . . P1, we conclude that there are 2m − 1, 2k − 1, 2m − 1 (where

m and k are nonnegative integers) vertices in the interiors of the minor arcs P̂1Pi, P̂iPj,

P̂jP1, respectively. (In other words, i = 2m + 1, j = 2k + i.) Hence

n = 2m − 1 + 2k − 1 + 2m − 1 + 3 = 2m+1 + 2k,

where m and k are nonnegative integers. The above discussion can easily lead to a tri-

angulation consisting of only isosceles triangles for n = 2m+1 + 2k. (The middle diagram

shown above illustrates the case n = 18 = 23+1 + 21. The right-hand side diagram shown

above illustrates the case n = 16 = 22+1 + 23.)

This problem was suggested by Gregory Galperin.

5. Three nonnegative real numbers r1, r2, r3 are written on a blackboard. These numbers have

the property that there exist integers a1, a2, a3, not all zero, satisfying a1r1+a2r2+a3r3 = 0.

We are permitted to perform the following operation: find two numbers x, y on the

blackboard with x ≤ y, then erase y and write y − x in its place. Prove that after a finite

number of such operations, we can end up with at least one 0 on the blackboard.

Solution: If two of the ai vanish, say a2 and a3, then r1 must be zero and we are done.

Assume at most one ai vanishes. If any one ai vanishes, say a3, then r2/r1 = −a1/a2

8



is a nonnegative rational number. Write this number in lowest terms as p/q, and put

r = r2/p = r1/q. We can then write r1 = qr and r2 = pr. Performing the Euclidean

algorithm on r1 and r2 will ultimately leave r and 0 on the blackboard. Thus we are done

again.

Thus it suffices to consider the case where none of the ai vanishes. We may also assume

none of the ri vanishes, as otherwise there is nothing to check. In this case we will show

that we can perform an operation to obtain r′1, r′2, r′3 for which either one of r′1, r′2, r′3
vanishes, or there exist integers a′1, a′2, a′3, not all zero, with a′1r

′
1 + a′2r

′
2 + a′3r

′
3 = 0 and

|a′1|+ |a′2|+ |a′3| < |a1|+ |a2|+ |a3|.

After finitely many steps we must arrive at a case where one of the ai vanishes, in which

case we finish as above.

If two of the ri are equal, then we are immediately done by choosing them as x and y.

Hence we may suppose 0 < r1, r2 < r3. Since we are free to negate all the ai, we may

assume a3 > 0. Then either a1 < −1
2
a3 or a2 < −1

2
a3 (otherwise a1r1 +a2r2 +a3r3 > (a1 +

1
2
a3)r1 + (a2 + 1

2
a3)r2 > 0). Without loss of generality, we may assume a1 < −1

2
a3. Then

choosing x = r1 and y = r3 gives the triple (r′1, r
′
2, r

′
3) = (r1, r2, r3 − r1) and (a′1, a

′
2, a

′
3) =

(a1 +a3, a2, a3). Since a1 < a1 +a3 < 1
2
a3 < −a1, we have |a′1| = |a1 +a3| < |a1| and hence

this operation has the desired effect.

This problem was suggested by Kiran Kedlaya.

6. At a certain mathematical conference, every pair of mathematicians are either friends or

strangers. At mealtime, every participant eats in one of two large dining rooms. Each

mathematician insists upon eating in a room which contains an even number of his or her

friends. Prove that the number of ways that the mathematicians may be split between

the two rooms is a power of two (i.e., is of the form 2k for some positive integer k).

Solution: Let n be the number of participants at the conference. We proceed by induction

on n.

If n = 1, then we have one participant who can eat in either room; that gives us total of

2 = 21 options.

Let n ≥ 2. The case in which some participant, P , has no friends is trivial. In this case,

P can eat in either of the two rooms, so the total number of ways to split n participants is

9



twice as many as the number of ways to split (n− 1) participants besides the participant

P . By induction, the latter number is a power of two, 2k, hence the number of ways to

split n participants is 2× 2k = 2k+1, also a power of two. So we assume from here on that

every participant has at least one friend.

We consider two different cases separately: the case when some participant has an odd

number of friends, and the case when each participant has an even number of friends.

Case 1: Some participant, Z, has an odd number of friends.

Remove Z from consideration and for each pair (X, Y ) of Z’s friends, reverse the rela-

tionship between X and Y (from friends to strangers or vice versa).

Claim. The number of possible seatings is unchanged after removing Z and reversing the

relationship between X and Y in each pair (X, Y ) of Z’s friends.

Proof of the claim. Suppose we have an arrangement prior to Z’s departure. By assump-

tion, Z has an even number of friends in the room with him.

If this number is 0, the room composition is clearly still valid after Z leaves the room.

If this number is positive, let X be one of Z’s friends in the room with him. By assumption,

person X also has an even number of friends in the same room. Remove Z from the room;

then X will have an odd number of friends left in the room, and there will be an odd

number of Z’s friends in this room besides X. Reversing the relationship between X and

each of Z’s friends in this room will therefore restore the parity to even.

The same reasoning applies to any of Z’s friends in the other dining room. Indeed, there

will be an odd number of them in that room, hence each of them will reverse relationships

with an even number of individuals in that room, preserving the parity of the number of

friends present.

Moreover, a legitimate seating without Z arises from exactly one arrangement including

Z, because in the case under consideration, only one room contains an even number of Z’s

friends.

Thus, we have to double the number of seatings for (n− 1) participants which is, by the

induction hypothesis, a power of 2. Consequently, for n participants we will get again a

power of 2 for the number of different arrangements.

Case 2: Each participant has an even number of friends.

10



In this case, each valid split of participants in two rooms gives us an even number of friends

in either room.

Let (A, B) be any pair of friends. Remove this pair from consideration and for each pair

(C, D), where C is a friend of A and D is a friend of B, change the relationship between

C and D to the opposite; do the same if C is a friend of B and D is a friend of A. Note

that if C and D are friends of both A and B, their relationship will be reversed twice,

leaving it unchanged.

Consider now an arbitrary participant X different from A and B and choose one of the two

dining rooms. [Note that in the case under consideration, the total number of participants

is at least 3, so such a triplet (A, B; X) can be chosen.] Let A have m friends in this

room and let B have n friends in this room; both m and n are even. When the pair

(A, B) is removed, X’s relationship will be reversed with either n, or m, or m + n − 2k

(for k the number of mutual friends of A and B in the chosen room), or 0 people within

the chosen room (depending on whether he/she is a friend of only A, only B, both, or

neither). Since m and n are both even, the parity of the number of X’s friends in that

room will be therefore unchanged in any case.

Again, a legitimate seating without A and B will arise from exactly one arrangement that

includes the pair (A, B): just add each of A and B to the room with an odd number

of the other’s friends, and then reverse all of the relationships between a friend of A and

a friend of B. In this way we create a one-to-one correspondence between all possible

seatings before and after the (A, B) removal.

Since the number of arrangements for n participants is twice as many as that for (n− 2)

participants, and that number for (n − 2) participants is, by the induction hypothesis, a

power of 2, we get in turn a power of 2 for the number of arrangements for n participants.

The problem is completely solved.

This problem was suggested by Sam Vandervelde.

Copyright c© Committee on the American Mathematics Competitions,
Mathematical Association of America
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§0 Problems

1. Prove that for each positive integer n, there are pairwise relatively prime integers
k0, . . . , kn, all strictly greater than 1, such that k0k1 . . . kn − 1 is the product of
two consecutive integers.

2. Let ABC be an acute, scalene triangle, and let M , N , and P be the midpoints
of BC, CA, and AB, respectively. Let the perpendicular bisectors of AB and
AC intersect ray AM in points D and E respectively, and let lines BD and CE
intersect in point F , inside triangle ABC. Prove that points A, N , F , and P all
lie on one circle.

3. Let n be a positive integer. Denote by Sn the set of points (x, y) with integer
coordinates such that

|x|+
∣∣∣∣y +

1

2

∣∣∣∣ < n.

A path is a sequence of distinct points (x1, y1), (x2, y2), . . . , (x`, y`) in Sn such that,
for i = 2, . . . , `, the distance between (xi, yi) and (xi−1, yi−1) is 1.

Prove that the points in Sn cannot be partitioned into fewer than n paths.

4. For which integers n ≥ 3 can one find a triangulation of regular n-gon consisting
only of isosceles triangles?

5. Three nonnegative real numbers r1, r2, r3 are written on a blackboard. These
numbers have the property that there exist integers a1, a2, a3, not all zero, satisfying
a1r1 + a2r2 + a3r3 = 0. We are permitted to perform the following operation: find
two numbers x, y on the blackboard with x ≤ y, then erase y and write y − x in
its place. Prove that after a finite number of such operations, we can end up with
at least one 0 on the blackboard.

6. At a certain mathematical conference, every pair of mathematicians are either
friends or strangers. At mealtime, every participant eats in one of two large
dining rooms. Each mathematician insists upon eating in a room which contains
an even number of his or her friends. Prove that the number of ways that the
mathematicians may be split between the two rooms is a power of two (i.e. is of
the form 2k for some positive integer k).
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§1 USAMO 2008/1, proposed by Titu Andreescu

Prove that for each positive integer n, there are pairwise relatively prime integers k0, . . . , kn, all

strictly greater than 1, such that k0k1 . . . kn − 1 is the product of two consecutive integers.

In other words, if we let
P (x) = x(x+ 1) + 1

then we would like there to be infinitely many primes dividing some P (t) for some integer
t.

In fact, this result is true in much greater generality. We first state:

Theorem 1.1 (Schur’s theorem)

If P (x) ∈ Z[x] is nonconstant and P (0) = 1, then there are infinitely many primes
which divide P (t) for some integer t.

Proof. If P (0) = 0, this is clear. So assume P (0) = c 6= 0.
Let S be any finite set of prime numbers. Consider then the value

P (k
∏
p∈S

p)

for some integer k. It is 1 (mod p) for each prime p, and if k is large enough it should not
be equal to 1 (because P is not constant). Therefore, it has a prime divisor not in S.

Remark. In fact the result holds without the assumption P (0) 6= 1. The proof requires
only small modifications, and a good exercise would be to write down a similar proof that
works first for P (0) = 20, and then for any P (0) 6= 0. (The P (0) = 0 case is vacuous, since
then P (x) is divisible by x.)

To finish the proof, let p1, . . . , pn be primes and xi be integers such that

P (x1) ≡ 0 (mod p1)

P (x2) ≡ 0 (mod p2)

...

P (xn) ≡ 0 (mod pn)

as promised by Schur’s theorem. Then, by Chinese remainder theorem, we can find x
such that x ≡ xi (mod pi) for each i, whence P (x) has at least n prime factor.
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§2 USAMO 2008/2, proposed by Zuming Feng

Let ABC be an acute, scalene triangle, and let M , N , and P be the midpoints of BC, CA, and

AB, respectively. Let the perpendicular bisectors of AB and AC intersect ray AM in points D

and E respectively, and let lines BD and CE intersect in point F , inside triangle ABC. Prove

that points A, N , F , and P all lie on one circle.

We present a barycentric solution and a synthetic solution.

Barycentric solution First, we find the coordinates of D. As D lies on AM , we know
D = (t : 1 : 1) for some t. Now by perpendicular bisector formula, we find

0 = b2(t− 1) + (a2 − c2) =⇒ t =
c2 + b2 − a2

b2
.

Thus we obtain
D =

(
2SA : c2 : c2

)
.

Analogously E = (2SA : b2 : b2), and it follows that

F =
(
2SA : b2 : c2

)
.

The sum of the coordinates of F is

(b2 + c2 − a2) + b2 + c2 = 2b2 + 2c2 − a2.

Hence the reflection of A over F is simply

2F −A =
(
2(b2 + c2 − a2)− (2b2 + 2c2 − a2) : 2b2 : 2c2

)
=
(
−a2 : 2b2 : 2c2

)
.

It is evident that F ′ lies on (ABC) : −a2yz − b2zx− c2xy = 0, and we are done.

Synthetic solution (harmonic) Here is a synthetic solution. Let X be the point so
that APXN is a cyclic harmonic quadrilateral. We contend that X = F . To see this it
suffices to prove B, X, D collinear (and hence C, X, E collinear by symmetry).

A

P N

B C

O

T
D

E
X

M

Let T be the midpoint of PN , so 4APX ∼ 4ATN . So 4ABX ∼ 4AMN , ergo

]XBA = ]NMA = ]BAM = ]BAD = ]DBA

as desired.
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Angle chasing solution (Mason Fang) Obviously ANOP is concyclic.

Claim — Quadrilateral BFOC is cyclic.

Proof. Write

]BFC = ]FBC + ]BCF = ]FBA+ ]ABC + ]BCA+ ]ACF

= ]DBA+ ]ABC + ]BCA+ ]ACE

= ]BAD + ]ABC + ]BCA+ ]EAC

= 2∠BAC = ∠BOC.

Define Q = AA ∩BC.

Claim — Point Q lies on FO.

Proof. Write

]BOQ = ]BOA+ ]AOQ = 2]BCA+ 90
◦

+ ]AQO

= 2]BCA+ 90
◦

+ ]AMO

= 2]BCA+ 90
◦

+ ]AMC + 90
◦

= ]BCA+ ]MAC = ]BCA+ ]ACE

= ]BCE = ]BOF.

As Q is the radical center of (ANOP ), (ABC) and (BFOC), this implies the result.
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§3 USAMO 2008/3, proposed by Gabriel Carroll

Let n be a positive integer. Denote by Sn the set of points (x, y) with integer coordinates such
that

|x|+
∣∣∣∣y +

1

2

∣∣∣∣ < n.

A path is a sequence of distinct points (x1, y1), (x2, y2), . . . , (x`, y`) in Sn such that, for i = 2, . . . , `,
the distance between (xi, yi) and (xi−1, yi−1) is 1.

Prove that the points in Sn cannot be partitioned into fewer than n paths.

First solution (local) We proceed by induction on n. The base case n = 1 is clear, so
suppose n > 1. Let S denote the set of points

S =

{
(x, y) : x+

∣∣∣∣y +
1

2

∣∣∣∣ ≥ n− 2

}
.

An example when n = 4 is displayed below.

a

For any minimal partition P of Sn, let P denote the path passing through the point
a = (n− 1, 0). Then the intersection of P with S consists of several disconnected paths;
let N be the number of nodes in the component containing a, and pick P such that N is
maximal. We claim that in this case P = S.

Assume not. First, note a = (n− 1, 0) must be connected to b = (n− 1,−1) (otherwise
join them to decrease the number of paths).

Now, starting from a = (n− 1, 0) walk along P away from b until one of the following
three conditions is met:

• We reach a point v not in S. Let w be the point before v, and x the point in S
adjacent to w. Then delete vw and add wx. This increases N while leaving the
number of edges unchanged: so this case can’t happen.

• We reach an endpoint v of P (which may be a), lying inside the set S, which is
not the topmost point (0, n− 1). Let w be the next point of S. Delete any edge
touching w and add edge vw. This increases N while leaving the number of edges
unchanged: so this case can’t happen.

6
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• We reach the topmost point (0, n− 1).

Thus we see that P must follow S until reaching the topmost point (0, n− 1). Similarly
it must reach the bottom-most point (0,−n). Hence P = S.

The remainder of Sn is just Sn−1, and hence this requires at least n− 1 paths to cover
by the inductive hypothesis. So Sn requires at least n paths, as desired.

Second solution (global) Here is a much shorter official solution, which is much trickier
to find, and “global” in nature.

Color the upper half of the diagram with a blue/red checkerboard pattern such that
the uppermost point (n− 1, 0) is blue. Reflect it over to the bottom, as shown.

Assume there are m paths. Cut in two any paths with two adjacent blue points; this
occurs only along the horizontal symmetry axis. Thus:

• After cutting there are at most m+ n paths, since at most n cuts occur.

• On the other hand, there are 2n more blue points than red points. Hence after
cutting there must be at least 2n paths (since each path alternates colors).

So m+ n ≥ 2n, hence m ≥ n.

Remark. This problem turned out to be known already. It appears in this reference:

Nikolai Beluhov, Nyakolko Zadachi po Shahmatna Kombinatorika, Matematika
Plyus, 2006, issue 4, pages 61–64.

Section 1 of 2 was reprinted with revisions as Nikolai Beluhov, Dolgii Put Korolya, Kvant,
2010, issue 4, pages 39–41. The reprint is available at http://kvant.ras.ru/pdf/2010/

2010-04.pdf.

Remark (Nikolai Beluhov). As pointed out in the reference above, this problem arises
naturally when we try to estimate the greatest possible length of a closed king tour on the
chessboard of size n× n with n even, a question posed by Igor Akulich in Progulki Korolya,
Kvant, 2000, issue 3, pages 47–48. Each one of the two references above contains a proof

7
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that the answer is n+
√

2(n2 − n).

8
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§4 USAMO 2008/4, proposed by Gregory Galperin

For which integers n ≥ 3 can one find a triangulation of regular n-gon consisting only of isosceles

triangles?

The answer is n of the form 2a(2b + 1) where a and b are nonnegative integers not
both zero.

Call the polygon A1 . . . An with indices taken modulo n. We refer to segments A1A2,
A2A3, . . . , AnA1 as short sides. Each of these must be in the triangulation. Note that

• when n is even, the isosceles triangles triangle using a short side A1A2 are4AnA1A2

and 4A1A2A3 only, which we call small.

• when n is odd, in addition to the small triangles, we have 4A 1
2
(n+3)A1A2, which

we call big.

This leads to the following two claims.

Claim — If n > 4 is even, then n works iff n/2 does.

Proof. All short sides must be part of a small triangle; after drawing these in, we obtain
an n/2-gon.

Thus the sides of P must pair off, and when we finish drawing we have an n/2-gon.

Since n = 4 works, this implies all powers of 2 work and it remains to study the case
when n is odd.

Claim — If n > 1 is odd, then n works if and only if n = 2b + 1 for some positive
integer b.

Proof. We cannot have all short sides part of small triangles for parity reasons, so some
side, must be part of a big triangle. Since big triangles contain the center O, there can
be at most one big triangle too.

Then we get 1
2(n− 1) small triangles, pairing up the remaining sides. Now repeating

the argument with the triangles on each half shows that the number n − 1 must be a
power of 2, as needed.

9
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§5 USAMO 2008/5, proposed by Kiran Kedlaya

Three nonnegative real numbers r1, r2, r3 are written on a blackboard. These numbers have

the property that there exist integers a1, a2, a3, not all zero, satisfying a1r1 + a2r2 + a3r3 = 0.

We are permitted to perform the following operation: find two numbers x, y on the blackboard

with x ≤ y, then erase y and write y − x in its place. Prove that after a finite number of such

operations, we can end up with at least one 0 on the blackboard.

We first show we can decrease the quantity |a1|+ |a2|+ |a3| as long as 0 /∈ {a1, a2, a3}.
Assume a1 > 0 and r1 > r2 > r3 without loss of generality and consider two cases.

• r2 > 0 or r3 > 0; these cases are identical. If r2 > 0 then r3 < 0 and get

0 = a1r1 + a2r2 + a3r3 > a1r3 + a3r3 =⇒ a1 + a3 < 0

so |a1 + a3| < |a3|, and hence we perform (r1, r2, r3) 7→ (r1 − r3, r2, r3).

• Both r2 and r3 are less than zero. Assume for contradiction that |a1 + a2| ≥ −a2 and
|a1 + a3| ≥ −a3 both hold (if either fails then we use (r1, r2, r3) 7→ (r1 − r2, r2, r3)
and (r1, r2, r3) 7→ (r1 − r3, r2, r3), respectively). Clearly a1 + a2 and a1 + a3 are
both positive in this case, so we get a1 + 2a2 and a1 + 2a3 ≥ 0; adding gives
a1 + a2 + a3 ≥ 0. But

0 = a1r1 + a2r2 + a3r3

> a1r2 + a2r2 + a3r2

= r2(a1 + a2 + a3)

=⇒ 0 < a1 + a2 + a3.

Since this covers all cases, we see that we can always decrease |a1|+ |a2|+ |a3| whenever
0 /∈ {a1, a2, a3}. Because the ai are integers this cannot occur indefinitely, so eventually
one of the ai’s is zero. At this point we can just apply the Euclidean Algorithm, so we’re
done.
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§6 USAMO 2008/6, proposed by Sam Vandervelde

At a certain mathematical conference, every pair of mathematicians are either friends or strangers.

At mealtime, every participant eats in one of two large dining rooms. Each mathematician insists

upon eating in a room which contains an even number of his or her friends. Prove that the

number of ways that the mathematicians may be split between the two rooms is a power of two

(i.e. is of the form 2k for some positive integer k).

Take the obvious graph interpretation where we are trying to 2-color a graph. Let A be
the adjacency matrix of the graph over F2, except the diagonal of A has deg v (mod 2)
instead of zero. Then let ~d be the main diagonal. Splittings then correspond to A~v = ~d.
It’s then immediate that the number of ways is either zero or a power of two, since if it
is nonempty it is a coset of kerA.

Thus we only need to show that:

Claim — At least one coloring exists.

Proof. If not, consider a minimal counterexample G. Clearly there is at least one odd
vertex v. Consider the graph with vertex set G− v, where all pairs of neighbors of v have
their edges complemented. By minimality, we have a good coloring here. One can check
that this extends to a good coloring on G by simply coloring v with the color matching
an even number of its neighbors. This breaks minimality of G, and hence all graphs G
have a coloring.

It’s also possible to use linear algebra. We prove the following lemma:

Lemma (grobber)

Let V be a finite dimensional vector space, T : V → V and w ∈ V . Then w is in the
image of T if and only if there are no ξ ∈ V ∨ for which ξ(w) 6= 0 and yet ξ ◦ T = 0.

Proof. Clearly if T (v) = w, then no ξ exists. Conversely, assume w is not in the image
of T . Then the image of T is linearly independent from w. Take a basis e1, . . . , em for
the image of T , add w, and then extend it to a basis for all of V . Then have ξ kill all ei
but not w.

Corollary

In a symmetric matrix A mod 2, there exists a vector v such that Av is a copy of
the diagonal of A.

Proof. Let ξ be such that ξ ◦ T = 0. Look at ξ as a column vector w>, and let d be the
diagonal. Then

0 = w> · T · w = ξ(d)

because this extracts the sum of coefficients submatrix of T , and all the symmetric entries
cancel off. Thus no ξ as in the previous lemma exists.

This corollary gives the desired proof.
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38th United States of America Mathematical Olympiad

Day I 12:30 PM – 5 PM EDT

April 28, 2009

1. Given circles ω1 and ω2 intersecting at points X and Y , let `1 be a line through the center

of ω1 intersecting ω2 at points P and Q and let `2 be a line through the center of ω2

intersecting ω1 at points R and S. Prove that if P , Q, R and S lie on a circle then the

center of this circle lies on line XY .

2. Let n be a positive integer. Determine the size of the largest subset of

{−n,−n + 1, . . . , n− 1, n}
which does not contain three elements a, b, c (not necessarily distinct) satisfying a+b+c =

0.

3. We define a chessboard polygon to be a polygon whose edges are situated along lines of

the form x = a or y = b, where a and b are integers. These lines divide the interior into

unit squares, which are shaded alternately grey and white so that adjacent squares have

different colors. To tile a chessboard polygon by dominoes is to exactly cover the polygon

by non-overlapping 1× 2 rectangles. Finally, a tasteful tiling is one which avoids the two

configurations of dominoes shown on the left below. Two tilings of a 3 × 4 rectangle are

shown; the first one is tasteful, while the second is not, due to the vertical dominoes in

the upper right corner.

a) Prove that if a chessboard polygon can be tiled by dominoes, then it can be done so

tastefully.

b) Prove that such a tasteful tiling is unique.

Copyright c© Mathematical Association of America



38th United States of America Mathematical Olympiad

Day II 12:30 PM – 5 PM EDT

April 29, 2009

4. For n ≥ 2 let a1, a2, . . . , an be positive real numbers such that

(a1 + a2 + · · ·+ an)

(
1

a1

+
1

a2

+ · · ·+ 1

an

)
≤

(
n +

1

2

)2

.

Prove that max(a1, a2, . . . , an) ≤ 4 min(a1, a2, . . . , an).

5. Trapezoid ABCD, with AB ‖ CD, is inscribed in circle ω and point G lies inside triangle

BCD. Rays AG and BG meet ω again at points P and Q, respectively. Let the line

through G parallel to AB intersect BD and BC at points R and S, respectively. Prove

that quadrilateral PQRS is cyclic if and only if BG bisects ∠CBD.

6. Let s1, s2, s3, . . . be an infinite, nonconstant sequence of rational numbers, meaning it

is not the case that s1 = s2 = s3 = · · · . Suppose that t1, t2, t3, . . . is also an infinite,

nonconstant sequence of rational numbers with the property that (si − sj)(ti − tj) is an

integer for all i and j. Prove that there exists a rational number r such that (si− sj)r and

(ti − tj)/r are integers for all i and j.

Copyright c© Mathematical Association of America



38th United States of America Mathematical Olympiad

1. Solution 1. Let ω denote the circumcircle of P,Q, R, S and let O denote the center of

ω. Line XY is the radical axis of circles ω1 and ω2. It suffices to show that O has equal

power to the two circles; that is, to show that

OO2
1 −O1S

2 = OO2
2 −O2Q

2 or OO2
1 + O2Q

2 = OO2
2 + O1S

2.

Let M and N be the intersections of lines O2O, `1 and O1O, `2. Because circles ω and ω2

intersect at points P and Q, we have PQ ⊥ OO2 (or `1 ⊥ OO2). Hence

OO2
1−OQ2 = (OM2+MO2

1)−(OM2+MQ2) = (O2M
2+MO2

1)−(O2M
2+MQ2) = O2O

2
1−O2Q

2

or

O2O
2
1 + OQ2 = OO2

1 + O2Q
2.

Likewise, we have O2O
2
1 + OS2 = OO2

2 + O1S
2. Because OS = OQ, we obtain that

OO2
1 + O2Q

2 = OO2
2 + O1S

2, which is what to be proved.

M

N

P

Q

X

R

S

O

O1 O2

Y

H

Solution 2. We maintain the notations of the first solution. Three pairs of circles (ω, ω1),

(ω1, ω2), (ω2, ω) meet at three pairs of points (R, S), (X, Y ), (P,Q), respectively; that is,

lines RS, XY, PQ are the respective radical axes of these pairs of circles. We consider two

cases.

In the first case, we assume that these three radical axes are not parallel. They must

be concurrent at the radical center, denoted by H, of these three circles. In particular,

it follows that H, X, Y lie a line, denoted by `, and ` ⊥ O1O2. On the other hand,

O1M ⊥ O2O and O2N ⊥ O1O. Hence H is the orthocenter of triangle OO1O2, from

which it follows that OH ⊥ O1O2. Therefore, O lies on `; that is, X, P,Q are collinear.



P

Q

X

R

S

O1

O2

Y

O/O3

P

Q X

R

S

O1

O2

Y

O/O3

In the second case, we assume that these three radical axes are parallel. We will then

deduce the above configurations. Let O3 be the midpoint of segment XY . From right

triangles O1O3Q,O1O3X,O1O2Q, we have

O3Q
2 = O1Q

2 + O1O
2
3 = O2Q

2 −O1O
2
2 + O1X

2 −XO2
3,

which is a expression symmetric about circles ω1 and ω2. Hence we can easily obtain

that O3Q
2 = O3S

2 and that O3 is the circumcenter of isosceles trapezoid PQSR; that is,

O3 = O, completing the proof.

This problem was suggested by Ian Le. The solutions were contributed by Zuming Feng.

2. The maximum size is n if n is even, and n + 1 if n is odd, achieved by the subset

{−n, . . . ,−
⌊n

2

⌋
− 1,

⌊n

2

⌋
+ 1, . . . , n}.

Lemma. Let A,B be finite nonempty subsets of Z. Then the set A + B = {a + b : a ∈
A, b ∈ B} has cardinality at least |A|+ |B| − 1.

Proof: Write A = {a1, . . . , al} and B = {b1, . . . , bm} with a1 < · · · < al and b1 <

· · · < bm. Then

a1 + b1, . . . , a1 + bm, a2 + bm, . . . , al + bm

is a strictly increasing sequence of l + m− 1 elements of A + B.



Let S be a subset of {−n, . . . , n} with the desired property; clearly 0 /∈ S. Put A =

S ∩ {−n, . . . ,−1} and B = S ∩ {1, . . . , n}. Then A + B and −S = {−s : s ∈ S} are

disjoint subsets of {−n, . . . , n}, so by the lemma,

2n + 1 ≥ |A + B|+ | − S| ≥ |A|+ |B| − 1 + |S| = 2|S| − 1,

or |S| ≤ n + 1. If n is odd, we are done.

If n is even, we must still show that |S| = n + 1 is impossible. Since A + B ⊆ {−n +

1, . . . , n− 1}, we cannot achieve the equality 2n+1 = |A+B|+ |−S| unless −n, n ∈ −S,

or equivalently −n, n ∈ S. Since −n ∈ S, each of the sets {1, n− 1}, . . . , {n/2− 1, n/2 +

1}, {n/2} must contain an element not in B. Thus |B| ≤ n/2, and similarly |A| ≤ n/2,

contradicting the hypothesis |S| = n + 1.

This problem was suggested by Kiran Kedlaya with Tewodros Amdeberhan.

3. a) We prove the first part by induction on the number n of dominoes in the tiling. The

claim is clearly true for n = 1. So suppose we have a chessboard polygon that can be tiled

by n > 1 dominoes. Of all the leftmost squares in the polygon, select the lowest one and

label it L; assume for sake of argument that square L is black. In the given tiling, remove

the domino covering L, leaving a polygon which may be tiled with n − 1 dominoes. By

the induction hypothesis, this chessboard polygon can be tastefully tiled.

Now replace the domino that was removed. If this domino is horizontal, then we are

guaranteed that the augmented tiling is still tasteful, since square L is black and there are

no squares below it. If the domino is vertical the augmented tiling may still be tasteful,

but if not the trouble can only arise because there is another vertical domino directly to its

right. In this case rotate the offending pair of dominoes to get two horizontal dominoes.

We are not done yet, but if we now repeat this process—removing the horizontal domino

covering L, tiling the remainder, and replacing the domino—then we will obtain a tasteful

tiling.

If square L is white we may obtain a tasteful tiling by performing a similar process.

This time we only encounter difficulty if the domino covering L in the original tiling is

horizontal, in which case there must be another horizontal domino directly above it. We

rotate this pair, remove the now vertical domino covering L, tile the remainder tastefully

using the induction hypothesis, and restore the vertical domino to finish.

b) Suppose now that there are two tasteful tilings of a given chessboard polygon. By

overlaying these two tilings we obtain chains of overlapping dominos, since every square



is part of one domino from each tiling. For example, a chain of length one indicates a

domino common to both tilings. A chain of length two cannot occur, since these arise

when a 2× 2 block is covered by horizontal dominos in one tiling and vertical dominos in

the other, and one of these configurations will be distasteful.

Since the tilings are distinct a chain of length three or more must occur; let R be the

region consisting of such a chain along with its interior, if any. (It is possible that such

a chain may completely occupy a region, so that only some of the dominoes in the chain

adjoin squares outside of R.) Note that the chain must include a horizontal domino along

its lowermost row. If there are two or more overlapping horizontal dominos, then one of

them will be a WB domino, i.e. have a white square on the left. Otherwise there are two

adjacent vertical dominos that overlap with the single horizontal domino; since they are

part of a tasteful tiling we again must have a WB domino. We will now focus on the tiling

that includes this WB domino.

The two squares above the WB domino must be part of region R. Furthermore, a single

horizontal domino cannot cover them both, nor can a pair of vertical dominos. (Both

cases yield distasteful configurations.) Hence a horizontal domino must cover at least one

of these squares, extending past the given WB domino either to the left or right. Hence

we can deduce the existence of a horizontal WB domino on the next row up. We may

repeat this argument until we reach a horizontal WB domino in region R for which the

two squares immediately above it are not both in region R. Hence this domino must be

part of the chain that defined R.

Now imagine walking along the chain, starting on the white square of the WB domino

that exists along the lowest row of region R and taking the first step towards the black

square of the same domino. Draw an arrow along each domino in the direction of travel all

the way around the chain. Since the squares must alternate white and black, these arrows

will always point from a white square to a black square. Furthermore, since the interior

of the region was initially to our left when we began the loop, it will always be to our left

whenever the chain follows the boundary of R.

But we now reach a contradiction. We earlier deduced the existence of a horizontal WB

domino that was part of the chain and was adjacent to the boundary of R, having a

square above it that was not part of R. Hence this domino must be traversed from right

to left, since we leave the interior of R to our left as we traverse the loop. Hence it must

contain an arrow pointing to the left, implying that it must be a BW domino instead.

This contradiction completes the proof.



This problem was suggested by Sam Vandervelde.

4. Let m = min(a1, a2, . . . , an) and M = max(a1, a2, . . . , an). Without loss of generality,

a1 = m and an = M . The Cauchy-Schwarz Inequality gives

Remark: Let m = min(a1, a2, . . . , an) and M = max(a1, a2, . . . , an). By symmetry,

we may assume without loss of generality, m = a1 ≤ a2 ≤ · · · ≤ an = M . We present

three solutions. The first solution is a direct application of the Cauchy-Schwarz Inequality.

The second solution bypasses Cauchy-Schwarz by applying one of its proofs. The third

solution applies the AM-GM and AM-HM inequalities. All of them share the same finish,

the case for n = 2.

If n = 2, given condition reads

(m + M)

(
1

m
+

1

M

)
≤ 25

4
.

It follows that

4(m + M)2 ≤ 25Mm or (4M −m)(M − 4m) ≤ 0. (1)

Because 4M −m > 0, it must be that M − 4m ≤ 0 and thus M ≤ 4m.

We may assume from now that n ≥ 3.

Solution 1. The Cauchy-Schwarz Inequality gives
(

n +
1

2

)2

≥ (a1 + a2 + · · ·+ an)

(
1

a1

+
1

a2

+ · · ·+ 1

an

)

= (m + a2 + · · ·+ an−1 + M)

(
1

M
+

1

a2

+ · · ·+ 1

an−1

+
1

m

)

≥



√
m

M
+ 1 + · · ·+ 1︸ ︷︷ ︸

n−2

+

√
M

m




2

.

Hence

n +
1

2
≥

√
m

M
+ n− 2 +

√
M

m
or

√
m

M
+

√
M

m
≤ 5

2
. (2)

It follows that

2(m + M) ≤ 5
√

Mm,

which is (1), completing our proof.



Solution 2. Consider the quadratic polynomial (in x)

p(x) =
1

2

[(√
a1x +

1√
an

)2

+

(√
anx +

1√
a1

)2

+
n−1∑
i=2

(√
aix +

1√
ai

)2

+

(
5− 2

√
m

M
− 2

√
M

m

)
x

]

=

(
1

2

n∑
i=1

ai

)
x2 +

2n + 1

2
· x +

(
1

2

n∑
i=1

1

ai

)

Its discriminant is equal to

∆ =

(
n +

1

2

)2

−
(

n∑
i=1

ai

)(
n∑

i=1

1

ai

)
,

which, by the given condition is nonnegative. Thus p(x) has a real root r, and

0 = 2p(r) ≥
(

5− 2

√
m

M
− 2

√
M

m

)
r.

Because all of the coefficients of p are positive, we must have r < 0, from which (2) follows.

Solution 3. We set a = a2+···+an−1

n−2
. Then m ≤ a2 ≤ a ≤ an−1 ≤ M and a2 + · · ·+ an−1 =

(n− 2)a. By the AM-HM Inequality, we have

1

a2

+ · · ·+ 1

an−1

≥ (n− 2)2

a2 + · · ·+ an−1

=
n− 2

a
.

If follows that
(

n +
1

2

)2

≥ (a1 + a2 + · · ·+ an)

(
1

a1

+
1

a2

+ · · ·+ 1

an

)

≥ (m + (n− 2)a + M)

(
1

m
+

n− 2

a
+

1

M

)

= (m + M)

(
1

m
+

1

M

)
+ (n− 2)2 +

(n− 2)(m + M)

a
+ (n− 2)a

(
1

m
+

1

M

)

=
(m + M)2

mM
+ (n− 2)2 +

(n− 2)(m + M)

mM
·
(

mM

a
+ a

)

By the AM-GM Inequality, we have mM
a

+a ≥ 2
√

mM with equality at m ≤ a =
√

mM ≤
M . We deduce that

(
n +

1

2

)2

≥ (m + M)2

mM
+ (n− 2)2 +

2(n− 2)(m + M)√
mM

.

Setting t = m+M√
mM

in the last inequality yields

(
n +

1

2

)2

≥ t2 + (n− 2)2 + 2(n− 2)t = (t + n− 2)2,



from which it follows that

n +
1

2
≥ t + n− 2.

Hence t ≤ 5/2, which is (1).

This problem was suggested by Titu Andreescu. The second solution was contributed by

Adam Hesterberg, and the third by Zuming Feng.

5.

Solution 1. First, we prove the “if” part by assuming that ray BG bisects ∠CBD; that

is, we assume that D̂Q = ĈQ.

It is easy to see that ABCD is an isosceles trapezoid with AD = BC. In particular,

ÂD = B̂C and ÂC = B̂D.

Because ABCPD is cyclic, it follows that

∠APC =
ÂC

2
=

B̂D

2
= ∠BCD = ∠SCD and ∠APD =

ÂD

2
=

B̂C

2
= ∠BDC = ∠RDC.

B

C

A

D

P

R S
G

B

CD

R S

Q

K

G

Because RS ‖ DC, it follows that 180◦ = ∠GRD + ∠RDC = ∠GRD + ∠APD and

180◦ = ∠GSC + ∠SCD = ∠GSC + ∠APC; that is, both GSCP and GRDP are cyclic.

Hence, ∠GPR = ∠GDR and ∠GPS = ∠GCS. In particular, we hav

∠RPS = ∠GPR + ∠GPS = ∠GDR + ∠GCS. (3)

Let K be the intersection of segments BQ and CD. We have ∠CBK = ∠QBD and

∠KCB = ∠DCB = ∠DQB; that is, triangles CBK and QBD are similar to each



other. Because RG ‖ CD, we have BG/GK = BR/RD. This means that G and R

are the corresponding points in the similar triangles CBK and QBD. Consequently, we

have ∠BCG = ∠BQR. In exactly the same way, we can show that ∠BDG = ∠BQS.

Combining the last two equations together with (3) yields

∠RQS = ∠BQS + ∠BQR = ∠BDG + ∠BCG = ∠RDG + ∠SCG = ∠RPS;

from which it follows that PQRS is cyclic.

Second, we prove the “only if” part by assuming that PQRS is cyclic. Let γ denote the

circumcircle of PQRS. We approach indirectly by assuming that ray BG does not bisect

∠CBD. Let G1 be the point on segment RS such that ray BG1 bisects ∠CBD. Let rays

AG1 and BG1 meet ω again at P1 and Q1 (other than A and B). By our proof of the “if”

part, P1Q1RS is cyclic, and let γ1 denote its circumcircle.

Hence lines RS, PQ, P1Q1 are the radical axes of pairs of circles γ and γ1, γ and ω, γ1

and ω, respectively. Because segments P1 is the midpoint of arc ĈD (not including A and

B), lines P1Q1 6‖ CD, implying that lines P1Q1 and RS intersect, and let X denote this

intersection. Thus X is the radical center of ω, γ, γ1. In particular, line PQ also passes

through X. We obtain the following configuration.

B

CD

A

R S

G1

P1

Q1

X

P/Q

Q/P

P/Q

Q/P

There are two possibilities for the position of line PQ, namely, (1) both P and Q lie on

minor arc P̂1Q1; (2) one of P and Q lies on minor arc D̂Q1 and the other lies on minor

arc P̂1B. If G lies on segment RG1, then Q lies on minor arc D̂Q, and we must have (2).

But in this case, P must lie on minor arc Q̂1P1, violating (2). If G lies on segment G1S,

then P must lie on minor arc P̂1B, and again we must have (2). But in this case, Q must

lie on minor arc Q̂1C, violating (2). In every case, we have a contradiction. Hence our

assumption was wrong, and ray BG bisects ∠CBD.



Solution 2. We present another approach of the “if” part.

B

C
D

Q

G

E

F

R/R1 S/S1

B

C
D

Q

G

E

F

A

R S

P

Let rays CG and DG meet ω again at E and F , respectively. Let R1 denote the intersection

of segments BD and QE, and let S1 denote the intersection of segments BC and QF .

Applying Pascal’s theorem to cyclic hexagon BDFQEC shows that R1, G, S1 are collinear.

Because

∠R1EG = ∠QEC =
ĈQ

2
=

D̂Q

2
= ∠DBQ = ∠R1BG,

we deduce that EBGR1 is cyclic. Because EBGR1 and EBCD are cyclic, we have

∠BR1S1 = ∠BR1G = ∠BEG = ∠BEC = ∠BDC,

from which it follows that R1S1 ‖ CD; that is, R1 = R and S1 = S.

Therefore, (3) becomes

∠RPS = ∠GDR + ∠GCS = ∠FDB + ∠BCE = ∠FQB + ∠BQE = ∠FQE = ∠RQS,

implying that PQRS is cyclic.

This problem was suggested by Zuming Feng.

6. Solution 1. First, we claim there exist i, j such that (si−sj)(ti− tj) 6= 0. Indeed, for any

fixed i, because the sequence s1, s2, . . . is nonconstant, there is some j such that sj 6= si. If

tj 6= ti the claim follows, so suppose tj = ti. Because the sequence t1, t2, . . . is nonconstant,



there exists k such that tk 6= ti. If sk 6= si the claim again follows, so suppose sk = si.

Then (sj − sk)(tj − tk) = (sj − si)(ti − tk) 6= 0, and the claim is proven.

We can reorder the pairs (si, ti) relative to each other without affecting either the hypoth-

esis or the conclusion of the problem. So by a suitable reordering, we may assume that

(s1 − s2)(t1 − t2) 6= 0.

Second, for any constants a and b, we can replace si by si − a and ti by ti − b for all

i without affecting either the hypothesis or the conclusion of the problem (since all the

differences si − sj and ti − tj remain unchanged). In particular, by taking a = s1 and

b = t1, we may assume that s1 = t1 = 0. So we have reduced the problem to the case

s1 = t1 = 0, s2 6= 0, t2 6= 0.

Call a pair of positive rational numbers (A,B) good if AB is an integer, and Asj and Btj

are also integers for all j.

Third, we show that a good pair exists.

We know that for all i ≥ 2, (si − s1)(ti − t1) = siti is an integer; and for all i, j ≥ 2,

(si−sj)(ti− tj) = siti−sitj−sjti +sjtj is an integer, which implies sitj +sjti is an integer.

Write the rational numbers sj, tj in lowest terms as sj = pj/qj and tj = uj/vj. We know

that, for each j, sjtj = pjuj/qjvj is an integer. Because uj is relatively prime to vj, then,

pj is divisible by vj, say pj = djvj for some integer dj. We also know that

s2tj + sjt2 =
p2uj

q2vj

+
pju2

qjv2

=
p2ujqjv2 + pju2q2vj

q2vjqjv2

is an integer. In particular, qj, being a factor of the denominator, must divide the numer-

ator. But qj divides p2ujqjv2, so it also divides the other term, pju2q2vj = dju2q2v
2
j . Since

qj is relatively prime to pj = djvj, it must divide u2q2. Moreover, u2q2 6= 0, because of our

assumption t2 6= 0. So we have a positive integer A = |u2q2| such that Asj is an integer

for all j. Analogously, we can find a positive integer B such that Btj is an integer for all

j. This (A,B) constitute a good pair, and existence is proven.

Now we are ready to complete our proof. We know that some good pair exists. We consider

a good pair for which the product AB is as small as possible. We will show that AB = 1.

Suppose that, for the minimal good pair, AB > 1; then AB has a prime factor p. If the

integer Asi is divisible by p for all i, then we can divide A by p and obtain a new good

pair (A/p, B) having a smaller product than before — a contradiction. So for some i, Asi

is not divisible by p. Then Bti must be divisible by p, because siti is an integer and so

(Asi)(Bti) = (AB)(siti) is an integer divisible by p. Likewise, there exists some j such

that Btj is not divisible by p, but Asj is.



Now write

(AB)(sitj + sjti)− (Asj)(Bti) = (Asi)(Btj).

All the parenthesized factors are integers, and the left-hand side is divisible by p, but the

right-hand side is not. This contradiction completes the proof that the minimal good pair

satisfies AB = 1.

But now take the minimal good pair (A,B), and let r = A. We have that sir = Asi and

ti/r = Bti are integers for all i, from which our desired conclusion follows.

Solution 2. For p a prime, define the p-adic norm ‖ · ‖p on rational numbers as follows:

for r 6= 0, ‖r‖p is the unique integer n for which we can write r = pna/b with a, b

integers not divisible by p. (By convention, ‖0‖p = +∞.) We will repeatedly use the well-

known (or easy to prove) fact that for any rational numbers r1, r2, we have ‖r1 ± r2‖p ≥
min(‖r1‖p, ‖r2‖p), with equality whenever ‖r1‖p 6= ‖r2‖p. The condition of the problem

implies that

‖si − sj‖p ≥ −‖ti − tj‖p (4)

for all i, j and all prime p.

We claim in fact that

‖si − sj‖p ≥ −‖tk − tl‖p

for all i, j, k, l and all prime p. Suppose otherwise; then there exist i, j, k, l, p for which ‖si−
sj‖p < −‖tk− tl‖p. Since ‖si−sj‖p = ‖(si−sk)− (sj−sk)‖p ≥ min(‖si−sk‖p, ‖sj−sk‖p),

at least one of ‖si − sk‖p and ‖sj − sk‖p, say the former, is strictly less than −‖tk − tl‖p.

By (4), it follows that ‖ti− tk‖p > ‖tk− tl‖p, and thus ‖ti− tl‖p = ‖(ti− tk)+ (tk− tl)‖p =

‖tk − tl‖p. Then by (4) again, ‖si − sl‖p ≥ −‖tk − tl‖p and ‖sk − sl‖p ≥ −‖tk − tl‖p,

whence ‖si − sk‖p = ‖(si − sl) − (sk − sl)‖p ≥ −‖tk − tl‖p, contradicting the assumption

that ‖si − sk‖p < −‖tk − tl‖p. This proves the claim.

Now for each prime p, define the integer f(p) = mini,j ‖si − sj‖p. Choose i0, j0, k0, l0 such

that si0 6= sj0 and tk0 6= tl0 ; then f(p) exists since it is bounded below by −‖tk0 − tl0‖p

(by the claim) and above by ‖si0 − sj0‖p. Moreover, if p does not divide the numerator or

denominator of either si0 − sj0 or tk0 − tl0 , then ‖si0 − sj0‖p = ‖tk0 − tl0‖p = 0 and thus

f(p) = 0. It follows that f(p) = 0 for all but finitely many primes.

We can now define r =
∏

p p−f(p), where the product is over all primes. For any i, j, we

have ‖si − sj‖p ≥ f(p) for all p by construction, and so (si − sj)r is an integer. On the

other hand, for any k, l and any prime p, ‖tk − tl‖p ≥ −‖si − sj‖p for all i, j by the claim,

and so ‖tk − tl‖p ≥ −f(p). It follows that (tk − tl)/r is an integer for all k, l, whence r is

the desired rational number.



This problem and the first solution was suggested by Gabriel Carroll. The second solution

was suggested by Lenhard Ng.
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§0 Problems

1. Given circles ω1 and ω2 intersecting at points X and Y , let `1 be a line through
the center of ω1 intersecting ω2 at points P and Q and let `2 be a line through the
center of ω2 intersecting ω1 at points R and S. Prove that if P , Q, R, and S lie on
a circle then the center of this circle lies on line XY .

2. Let n be a positive integer. Determine the size of the largest subset of {−n,−n+
1, . . . , n − 1, n} which does not contain three elements a, b, c (not necessarily
distinct) satisfying a+ b+ c = 0.

3. We define a chessboard polygon to be a simple polygon whose sides are situated
along lines of the form x = a or y = b, where a and b are integers. These lines divide
the interior into unit squares, which are shaded alternately grey and white so that
adjacent squares have different colors. To tile a chessboard polygon by dominoes is
to exactly cover the polygon by non-overlapping 1× 2 rectangles. Finally, a tasteful
tiling is one which avoids the two configurations of dominoes and colors shown on
the left below. Two tilings of a 3× 4 rectangle are shown; the first one is tasteful,
while the second is not, due to the vertical dominoes in the upper right corner.

Distasteful tilings

Prove that (a) if a chessboard polygon can be tiled by dominoes, then it can be
done so tastefully, and (b) such a tasteful tiling is unique.

4. For n ≥ 2, let a1, a2, . . . , an be positive real numbers such that

(a1 + a2 + · · ·+ an)

(
1

a1
+

1

a2
+ · · ·+ 1

an

)
≤
(
n+

1

2

)2

.

Prove that max (a1, . . . , an) ≤ 4 min (a1, . . . , an).

5. Trapezoid ABCD, with AB ‖ CD, is inscribed in circle ω and point G lies inside
triangle BCD. Rays AG and BG meet ω again at points P and Q, respectively.
Let the line through G parallel to AB intersect BD and BC at points R and S,
respectively. Prove that quadrilateral PQRS is cyclic if and only if BG bisects
∠CBD.

6. Let s1, s2, s3, . . . be an infinite, nonconstant sequence of rational numbers, meaning
it is not the case that s1 = s2 = s3 = . . . . Suppose that t1, t2, t3, . . . is also
an infinite, nonconstant sequence of rational numbers with the property that
(si − sj)(ti − tj) is an integer for all i and j. Prove that there exists a rational
number r such that (si − sj)r and (ti − tj)/r are integers for all i and j.
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§1 USAMO 2009/1, proposed by Ian Le

Given circles ω1 and ω2 intersecting at points X and Y , let `1 be a line through the center of ω1

intersecting ω2 at points P and Q and let `2 be a line through the center of ω2 intersecting ω1 at

points R and S. Prove that if P , Q, R, and S lie on a circle then the center of this circle lies on

line XY .

Let r1, r2, r3 denote the circumradii of ω1, ω2, and ω3, respectively.

O1 O2

O

X

Y

P

Q

R

S

We wish to show that O3 lies on the radical axis of ω1 and ω2. Let us encode the
conditions using power of a point. Because O1 is on the radical axis of ω2 and ω3,

Powω2(O1) = Powω3(O1)

=⇒ O1O
2
2 − r22 = O1O

2
3 − r23.

Similarly, because O2 is on the radical axis of ω1 and ω3, we have

Powω1(O2) = Powω3(O2)

=⇒ O1O
2
2 − r21 = O2O

2
3 − r23.

Subtracting the two gives

(O1O
2
2 − r22)− (O1O

2
2 − r21) = (O1O

2
3 − r23)− (O2O

2
3 − r23)

=⇒ r21 − r22 = O1O
2
3 −O2O

2
3

=⇒ O2O
2
3 − r22 = O1O

2
3 − r21

=⇒ Powω2(O3) = Powω1(O3)

as desired.
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§2 USAMO 2009/2, proposed by Kiran Kedlaya and Tewordos
Amdeberhan

Let n be a positive integer. Determine the size of the largest subset of {−n,−n+ 1, . . . , n− 1, n}
which does not contain three elements a, b, c (not necessarily distinct) satisfying a+ b+ c = 0.

The answer is n with n even and n+ 1 with n odd; the construction is to take all odd
numbers.

To prove this is maximal, it suffices to show it for n even; we do so by induction on
even n ≥ 2 with the base case being trivial. Letting A be the subset, we consider three
cases:

(i) If |A ∩ {−n,−n+ 1, n− 1, n}| ≤ 2, then by the hypothesis for n− 2 we are done.

(ii) If both n ∈ A and −n ∈ A, then there can be at most n− 2 elements in A \ {±n},
one from each of the pairs (1, n− 1), (2, n− 2), . . . and their negations.

(iii) If n, n − 1,−n + 1 ∈ A and −n /∈ A, and at most n − 3 more can be added, one
from each of (1, n − 2), (2, n − 3), . . . and (−2,−n + 2), (−3,−n + 3), . . . . (In
particular −1 /∈ A. Analogous case for −A if n /∈ A.)

Thus in all cases, |A| ≤ n as needed.

Remark. Examples of equality cases:

• All odd numbers

• For n even, the set {1, 2, . . . , n}

• For n = 4, the set {−3, 2, 3, 4} also achieves the optimum. I suspect there are more.
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§3 USAMO 2009/3, proposed by Sam Vandervelde

We define a chessboard polygon to be a simple polygon whose sides are situated along lines of the
form x = a or y = b, where a and b are integers. These lines divide the interior into unit squares,
which are shaded alternately grey and white so that adjacent squares have different colors. To
tile a chessboard polygon by dominoes is to exactly cover the polygon by non-overlapping 1× 2
rectangles. Finally, a tasteful tiling is one which avoids the two configurations of dominoes and
colors shown on the left below. Two tilings of a 3× 4 rectangle are shown; the first one is tasteful,
while the second is not, due to the vertical dominoes in the upper right corner.

Distasteful tilings

Prove that (a) if a chessboard polygon can be tiled by dominoes, then it can be done so

tastefully, and (b) such a tasteful tiling is unique.

Proof of (a): This is easier, and by induction. Let P denote the chessboard polygon
which can be tiled by dominoes.

Consider a lower-left square s of the polygon, and WLOG is it black (other case
similar). Then we have two cases:

• If there exists a domino tiling of P where s is covered by a vertical domino, then
delete this domino and apply induction on the rest of P. This additional domino
will not cause any distasteful tilings.

• Otherwise, assume s is covered by a horizontal domino in every tiling. Again delete
this domino and apply induction on the rest of P. The resulting tasteful tiling
should not have another horizontal domino adjacent to the one covering s, because
otherwise we could have replaced that 2× 2 square with two vertical dominoes to
arrive in the first case. So this additional domino will not cause any distasteful
tilings.

Remark. The second case can actually arise, for example in the following picture.

Thus one cannot just try to cover s with a vertical domino and claim the rest of P is tile-able.
So the induction is not as easy as one might hope.

One can phrase the solution algorithmically too, in the following way: any time we see a
distasteful tiling, we rotate it to avoid the bad pattern. The bottom-left corner eventually
becomes stable, and an induction shows the termination of the algorithm.

Proof of (b): We now turn to proving uniqueness. Suppose for contradiction there
are two distinct tasteful tilings. Overlaying the two tilings on top of each other induces
several cycles of overlapping dominoes at positions where the tilings differ.

5

http://web.evanchen.cc


USAMO 2009 Solution Notes web.evanchen.cc, updated April 17, 2020

Henceforth, it will be convenient to work with the lattice Z2, treating the squares as
black/white points, and we do so. Let γ be any such cycle and let s denote a lower
left point, and again WLOG it is black. Orient γ counterclockwise henceforth. Restrict
attention to the lattice polygon Q enclosed by γ (we consider points of γ as part of Q).

In one of the two tilings of (lattice points of) Q, the point s will be covered by a
horizontal domino; in the other tiling s will be covered by a vertical domino. From now
on we will focus only on the latter one. Observe that we now have a set of dominoes
along γ, such that γ points from the white point to the black point within each domino.

Now impose coordinates so that s = (0, 0). Consider the stair-case sequence of points
p0 = s = (0, 0), p1 = (1, 0), p2 = (1, 1), p3 = (2, 1), and so on. By hypothesis, p0 is
covered by a vertical domino. Then p1 must be covered by a horizontal domino, to avoid
a distasteful tiling. Then if p2 is in Q, then it must be covered by a vertical domino to
avoid a distasteful tiling, and so on. We may repeat this argument as long the points pi
lie inside Q. (See figure below; the staircase sequence is highlighted by red halos.)

s

a

b

The curve γ by definition should cross y = x− 1 at the point b = (1, 0). Let a denote
the first point of this sequence after p1 for which γ crosses y = x− 1 again.

Now a is tiled by a vertical domino whose black point is to the right of `. But the line
segment ` cuts Q into two parts, and the orientation of γ has this path also entering
from the right. This contradicts the fact that the orientation of γ points only from white
to black within dominoes. This contradiction completes the proof.

Remark. Note the problem is false if you allow holes (consider a 3 × 3 with the middle
square deleted).
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§4 USAMO 2009/4, proposed by Titu Andreescu

For n ≥ 2, let a1, a2, . . . , an be positive real numbers such that

(a1 + a2 + · · ·+ an)

(
1

a1
+

1

a2
+ · · ·+ 1

an

)
≤
(
n+

1

2

)2

.

Prove that max (a1, . . . , an) ≤ 4 min (a1, . . . , an).

Assume a1 is the largest and a2 is the smallest. Let M = a1/a2. We wish to show
M ≤ 4.

In left-hand side of given, write as a2 + a1 + · · ·+ an. By Cauchy Schwarz, one obtains(
n+

1

2

)2

≥ (a2 + a1 + a3 + · · ·+ an)

(
1

a1
+

1

a2
+

1

a3
+ · · ·+ 1

an

)
≥
(√

a2
a1

+

√
a1
a2

+ 1 + · · ·+ 1

)2

≥
(√

1/M +
√
M + (n− 2)

)2
.

Expanding and solving for M gives 1/4 ≤M ≤ 4 as needed.
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§5 USAMO 2009/5, proposed by Zuming Feng

Trapezoid ABCD, with AB ‖ CD, is inscribed in circle ω and point G lies inside triangle BCD.

Rays AG and BG meet ω again at points P and Q, respectively. Let the line through G parallel

to AB intersect BD and BC at points R and S, respectively. Prove that quadrilateral PQRS is

cyclic if and only if BG bisects ∠CBD.

Perform an inversion around B with arbitrary radius, and denote the inverse of a point
Z with Z∗.

A B

CD

Q

G

R S

P

B

R∗ S∗

G∗

D∗ C∗
Q∗

A∗
P ∗

After inversion, we obtain a cyclic quadrilateral BS∗G∗R∗ and points C∗, D∗ on BS∗,
BR∗, such that (BC∗D∗) is tangent to (BS∗G∗R∗) — in other words, so that C∗D∗

is parallel to S∗R∗. Point A∗ lies on line C∗D∗ so that A∗B is tangent to (BS∗G∗R∗).
Points P ∗ and Q∗ are the intersections of (A∗BG∗) and BG∗ with line C∗D∗.

Observe that P ∗Q∗R∗S∗ is a trapezoid, so it is cyclic if and only if it isosceles.
Let X be the second intersection of line G∗P ∗ with (BS∗R∗). Because

]Q∗P ∗G∗ = ]A∗BG∗ = ]BXG∗

we find that BXS∗R∗ is an isosceles trapezoid.
If G∗ is indeed the midpoint of the arc then everything is clear by symmetry now.

Conversely, if P ∗R∗ = Q∗S∗ then that means P ∗Q∗R∗S∗ is a cyclic trapezoid, and hence
that the perpendicular bisectors of P ∗Q∗ and R∗S∗ are the same. Hence B, X, P ∗, Q∗

are symmetric around this line. This forces G∗ to be the midpoint of arc R∗S∗ as desired.

8
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§6 USAMO 2009/6, proposed by Gabriel Carroll

Let s1, s2, s3, . . . be an infinite, nonconstant sequence of rational numbers, meaning it is not the

case that s1 = s2 = s3 = . . . . Suppose that t1, t2, t3, . . . is also an infinite, nonconstant sequence

of rational numbers with the property that (si − sj)(ti − tj) is an integer for all i and j. Prove

that there exists a rational number r such that (si − sj)r and (ti − tj)/r are integers for all i and

j.

First we eliminate the silly edge case:

Claim — For some i and j, we have (si − sj)(ti − tj) 6= 0.

Proof. Assume not. WLOG s1 6= s2, then t1 = t2. Now select i such that ti 6= t1 = t2.
Then either ti − s1 6= 0 or ti − s2 6= 0, contradiction.

So, WLOG (by permutation) that n = (s1 − s2)(t1 − t2) 6= 0. By shifting and scaling
appropriately, we may assume

s1 = t1 = 0, s2 = 1, t2 = n.

Thus we deduce
siti ∈ Z, sitj + sjti ∈ Z ∀i, j.

Claim — For any index i, ti ∈ Z, si ∈ 1
nZ.

Proof. We have siti ∈ Z and ti + nsi ∈ Z by problem condition. By looking at νp of this,
we conclude nsi, ti ∈ Z (since if either as negative p-adic value, so does the other, and
then siti /∈ Z).

Last claim:

Claim — If d = gcd t•, then dsi ∈ Z for all i.

Proof. Consider a prime p | n, and let e = νp(tj). We will show νp(si) ≥ −e for any i.
This is already true for i = j, so assume i 6= j. Assume for contradiction νp(si) < −e.

Then νp(ti) > e = νp(tk). Since νp(sk) ≥ −e we deduce νp(sitk) < νp(skti); so νp(sitk) ≥ 0
and νp(si) ≥ −e as desired.
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39th United States of America Mathematical Olympiad 2010

Day I 12:30 PM – 5 PM EDT

April 27, 2010

1. Let AXY ZB be a convex pentagon inscribed in a semicircle of diameter AB. Denote by

P, Q,R, S the feet of the perpendiculars from Y onto lines AX, BX,AZ,BZ, respectively.

Prove that the acute angle formed by lines PQ and RS is half the size of ∠XOZ, where

O is the midpoint of segment AB.

2. There are n students standing in a circle, one behind the other. The students have heights

h1 < h2 < . . . < hn. If a student with height hk is standing directly behind a student

with height hk−2 or less, the two students are permitted to switch places. Prove that it is

not possible to make more than
(

n
3

)
such switches before reaching a position in which no

further switches are possible.

3. The 2010 positive numbers a1, a2, . . . , a2010 satisfy the inequality aiaj ≤ i+j for all distinct

indices i, j. Determine, with proof, the largest possible value of the product a1a2 · · · a2010.

Copyright c© Mathematical Association of America
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Day II 12:30 PM – 5 PM EDT

April 28, 2010

4. Let ABC be a triangle with ∠A = 90◦. Points D and E lie on sides AC and AB,

respectively, such that ∠ABD = ∠DBC and ∠ACE = ∠ECB. Segments BD and CE

meet at I. Determine whether or not it is possible for segments AB, AC, BI, ID,CI, IE

to all have integer lengths.

5. Let q = 3p−5
2

where p is an odd prime, and let

Sq =
1

2 · 3 · 4
+

1

5 · 6 · 7
+ . . . +

1

q(q + 1)(q + 2)
.

Prove that if 1
p
− 2Sq = m

n
for integers m and n, then m− n is divisible by p.

6. A blackboard contains 68 pairs of nonzero integers. Suppose that for each positive integer

k at most one of the pairs (k, k) and (−k,−k) is written on the blackboard. A student

erases some of the 136 integers, subject to the condition that no two erased integers may

add to 0. The student then scores one point for each of the 68 pairs in which at least one

integer is erased. Determine, with proof, the largest number N of points that the student

can guarantee to score regardless of which 68 pairs have been written on the board.
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1. Solution by Titu Andreescu: Let T be the foot of the perpendicular from Y to line

AB. We note the P,Q, T are the feet of the perpendiculars from Y to the sides of triangle

ABX. Because Y lies on the circumcircle of triangle ABX, points P,Q, T are collinear,

by Simson’s theorem. Likewise, points S, R, T are collinear.

We need to show that ∠XOZ = 2∠PTS or

∠PTS =
∠XOZ

2
=

_

XZ

2
=

_

XY

2
+

_

Y Z

2
= ∠XAY + ∠ZBY = ∠PAY + ∠SBY.

Because ∠PTS = ∠PTY + ∠STY , it suffices to prove that

∠PTY = ∠PAY and ∠STY = ∠SBY ;

that is, to show that quadrilaterals APY T and BSY T are cyclic, which is evident, because

∠APY = ∠ATY = 90◦ and ∠BTY = ∠BSY = 90◦.

Alternate Solution from Lenny Ng and Richard Stong: Since Y Q, Y R are per-

pendicular to BX, AZ respectively, ∠RY Q is equal to the acute angle between lines BX

and AZ, which is 1
2
(
︷ ︷
AX +

︷ ︷
BZ) = 1

2
(180◦−

︷ ︷
XZ) since X,Z lie on the circle with diameter

AB. Also, ∠AXB = ∠AZB = 90◦ and so PXQY and SZRY are rectangles, whence

∠PQY = 90◦ − ∠Y XB = 90◦ −
︷ ︷
Y B /2 and ∠Y RS = 90◦ − ∠AZY = 90◦ −

︷︷
AY /2.

Finally, the angle between PQ and RS is

∠PQY + ∠Y RS − ∠RY Q = (90◦ −
︷ ︷
Y B /2) + (90◦ −

︷︷
AY /2)− (90◦ −

︷ ︷
XZ /2)

=
︷ ︷
XZ /2

= (∠XOZ)/2,



as desired.

This problem was proposed by Titu Andreescu.

2. Solution from Kiran Kedlaya: Let hi also denote the student with height hi. We prove

that for 1 ≤ i < j ≤ n, hj can switch with hi at most j − i − 1 times. We proceed by

induction on j− i, the base case j− i = 1 being evident because hi is not allowed to switch

with hi−1.

For the inductive step, note that hi, hj−1, hj can be positioned on the circle either in

this order or in the order hi, hj, hj−1. Since hj−1 and hj cannot switch, the only way to

change the relative order of these three students is for hi to switch with either hj−1 or hj.

Consequently, any two switches of hi with hj must be separated by a switch of hi with

hj−1. Since there are at most j − i − 2 of the latter, there are at most j − i − 1 of the

former.

The total number of switches is thus at most

n−1∑
i=1

n∑
j=i+1

(j − i− 1) =
n−1∑
i=1

n−i−1∑
j=0

j

=
n−1∑
i=1

(
n− i

2

)

=
n−1∑
i=1

((
n− i + 1

3

)
−

(
n− i

3

))

=

(
n

3

)
.

Note: One can also ask to prove that the number of switches before no more are possible

depends only on the original ordering, or to find all initial positions for which
(

n
3

)
switches

are possible (the only one is when the students are sorted in increasing order).

Alternative Solution from Warut Suksompong: For i = 1, 2, . . . , n− 1, let si be the

number of students with height no more than hi+1 standing (possibly not directly) behind

the student with height hi and (possibly not directly) in front of the one with height hi+1.

Note that si ≤ i− 1 for all i.

Now we take a look what happens when two students switch places.

• If the student with height hn is involved in the switch, sn−1 decreases by 1, while all

the other si’s remain the same.



• Otherwise, suppose the students with heights ha and hb are switched, with a + 1 <

b < n, then sb−1 decreases by 1, while sb increases by 1. All the other si’s remain the

same.

Since si ≤ i− 1 for all i = 1, 2, . . . , n− 1, the maximal number of switches is no more than

the number of switches in the case where initially si = i − 1 for all i. In that case, the

number of switches is
∑n−2

i=1 i(n− 1− i) =
(

n
3

)
.

Note: With this solution, it is also easy to see that the number of switches until no more

are possible depends only on the original ordering.

This problem was proposed by Kiran Kedlaya jointly with Travis Schedler and David

Speyer.

3. Solution from Gabriel Carroll: Multiplying together the inequalities a2i−1a2i ≤ 4i− 1

for i = 1, 2, . . . , 1005, we get

a1a2 · · · a2010 ≤ 3 · 7 · 11 · · · 4019. (1)

The tricky part is to show that this bound can be attained.

Let

a2008 =

√
4017 · 4018

4019
, a2009 =

√
4019 · 4017

4018
, a2010 =

√
4018 · 4019

4017
,

and define ai for i < 2008 by downward induction using the recursion

ai = (2i + 1)/ai+1.

We then have

aiaj = i + j whenever j = i + 1 or i = 2008, j = 2010. (2)

We will show that (2) implies aiaj ≤ i + j for all i < j, so that this sequence satisfies the

hypotheses of the problem. Since a2i−1a2i = 4i − 1 for i = 1, . . . , 1005, the inequality (1)

is an equality, so the bound is attained.

We show that aiaj ≤ i + j for i < j by downward induction on i + j. There are several

cases:

• If j = i + 1, or i = 2008, j = 2010, then aiaj = i + j, from (2).



• If i = 2007, j = 2009, then

aiai+2 =
(aiai+1)(ai+2ai+3)

(ai+1ai+3)
=

(2i + 1)(2i + 5)

2i + 4
< 2i + 2.

Here the second equality comes from (2), and the inequality is checked by multiplying

out: (2i + 1)(2i + 5) = 4i2 + 12i + 5 < 4i2 + 12i + 8 = (2i + 2)(2i + 4).

• If i < 2007 and j = i + 2, then we have

aiai+2 =
(aiai+1)(ai+2ai+3)(ai+2ai+4)

(ai+1ai+2)(ai+3ai+4)
≤ (2i + 1)(2i + 5)(2i + 6)

(2i + 3)(2i + 7)
< 2i + 2.

The first inequality holds by applying the induction hypothesis for (i + 2, i + 4), and

(2) for the other pairs. The second inequality can again be checked by multiplying

out: (2i + 1)(2i + 5)(2i + 6) = 8i3 + 48i2 + 82i + 30 < 8i3 + 48i2 + 82i + 42 =

(2i + 2)(2i + 3)(2i + 7).

• If j − i > 2, then

aiaj =
(aiai+1)(ai+2aj)

ai+1ai+2

≤ (2i + 1)(i + 2 + j)

2i + 3
< i + j.

Here we have used the induction hypothesis for (i + 2, j), and again we check the

last inequality by multiplying out: (2i + 1)(i + 2 + j) = 2i2 + 5i + 2 + 2ij + j <

2i2 + 3i + 2ij + 3j = (2i + 3)(i + j).

This covers all the cases and shows that aiaj ≤ i + j for all i < j, as required.

Variant Solution by Paul Zeitz: It is possible to come up with a semi-alternative

solution, after constructing the sequence, by observing that when the two indices differ by

an even number, you can divide out precisely. For example, if you wanted to look at a3a8,

you would use the fact that a3a4a5a6a7a8 = (7)(11)(15) and a4a5a6a7 = (9)(13). Hence we

need to check that (7)(11)(15)/((9)(13)) < 11, which is easy AMGM/ Symmetry.

However, this attractive method requires much more subtlety when the indices differ by

an odd number. It can be pulled off, but now you need, as far as I know, either to use the

precise value of a2010 or establish inequalities for (ak)
2 for all values of k. It is ugly, but it

may be attempted.

This problem was suggested by Gabriel Carroll.

4. Solution from Zuming Feng: The answer is no, it is not possible for segments AB,

BC, BI, ID, CI, IE to all have integer lengths.



Assume on the contrary that these segments do have integer side lengths. We set α =

∠ABD = ∠DBC and β = ∠ACE = ∠ECB. Note that I is the incenter of triangle ABC,

and so ∠BAI = ∠CAI = 45◦. Applying the Law of Sines to triangle ABI yields

AB

BI
=

sin(45◦ + α)

sin 45◦
= sin α + cos α,

by the addition formula (for the sine function). In particular, we conclude that s =

sin α+cos α is rational. It is clear that α+β = 45◦. By the subtraction formulas, we have

s = sin(45◦ − β) + cos(45◦ − β) =
√

2 cos β,

from which it follows that cos β is not rational. On the other hand, from right triangle

ACE, we have cos β = AC/EC, which is rational by assumption. Because cos β cannot

not be both rational and irrational, our assumption was wrong and not all the segments

AB, BC, BI, ID, CI, IE can have integer lengths.

Alternate Solution from Jacek Fabrykowski: Using notations as introduced in the

problem, let BD = m, AD = x, DC = y, AB = c, BC = a and AC = b. The angle

bisector theorem implies
x

b− x
=

c

a

and the Pythagorean Theorem yields m2 = x2 + c2. Both equations imply that

2ac =
(bc)2

m2 − c2
− a2 − c2

and since a2 = b2 + c2 is rational, a is rational too (observe that to reach this conclusion,

we only need to assume that b, c, and m are integers). Therefore, x = bc
a+c

is also rational,

and so is y. Let now (similarly to the notations above from the solution by Zuming Feng)

∠ABD = α and ∠ACE = β where α + β = π/4. It is obvious that cos α and cos βare

both rational and the above shows that also sin α = x/m is rational. On the other hand,

cos β = cos(π/4 − α) = (
√

2/2)(sin α + sin β), which is a contradiction. The solution

shows that a stronger statement holds true: There is no right triangle with both legs and

bisectors of acute angles all having integer lengths.

Alternate Solution from Zuming Feng: Prove an even stronger result: there is no

such right triangle with AB, AC, IB, IC having rational side lengths. Assume on the

contrary, that AB,AC, IB, IC have rational side lengths. Then BC2 = AB2 + AC2 is

rational. On the other hand, in triangle BIC, ∠BIC = 135◦. Applying the law of cosines

to triangle BIC yields

BC2 = BI2 + CI2 −
√

2BI · CI



which is irrational. Because BC2 cannot be both rational and irrational, we conclude that

our assumption was wrong and that not all of the segments AB, AC, IB, IC can have

rational lengths.

This problem was proposed by Zuming Feng.

5. Solution by Titu Andreescu: We have

2

k(k + 1)(k + 2)
=

(k + 2)− k

k(k + 1)(k + 2)
=

1

k(k + 1)
− 1

(k + 1)(k + 2)

=
1

k
− 1

k + 1
−

(
1

k + 1
− 1

k + 2

)

=
1

k
+

1

k + 1
+

1

k + 2
− 3

k + 1
.

Hence

2Sq =

(
1

2
+

1

3
+

1

4
+ . . . +

1

q
+

1

q + 1
+

1

q + 2

)
− 3

(
1

3
+

1

6
+ . . . +

1

q + 1

)

=

(
1

2
+

1

3
+ . . . +

1
3p−1

2

)
−

(
1 +

1

2
+ . . . +

1
p−1
2

)
,

and so

1− m

n
= 1 + 2Sq − 1

p
=

1
p+1
2

+ . . . +
1

p− 1
+

1

p + 1
+ . . . +

1
3p−1

2

=

(
1

p+1
2

+
1

3p−1
2

)
+ . . . +

(
1

p− 1
+

1

p + 1

)

=
p(

p+1
2

) (
3p−1

2

) + . . . +
p

(p− 1)(p + 1)
.

Because all denominators are relatively prime with p, it follows that n−m is divisible by

p and we are done.

This problem was suggested by Titu Andreescu.

6. Solution by Zuming Feng and Paul Zeitz: The answer is 43.

We first show that we can always get 43 points. Without loss of generality, we assume

that the value of x is positive for every pair of the form (x, x) (otherwise, replace every

occurrence of x on the blackboard by −x, and every occurrence of −x by x). Consider the

ordered n-tuple (a1, a2, . . . , an) where a1, a2, . . . , an denote all the distinct absolute values

of the integers written on the board.

Let φ =
√

5−1
2

, which is the positive root of φ2+φ = 1. We consider 2n possible underlining

strategies: Every strategy corresponds to an ordered n-tuple s = (s1, . . . , sn) with si = φ



or si = 1 − φ (1 ≤ i ≤ n). If si = φ, then we underline all occurrences of ai on the

blackboard. If si = 1 − φ, then we underline all occurrences of −ai on the blackboard.

The weight w(s) of strategy s equals the product
∏n

i=1 si. It is easy to see that the sum

of weights of all 2n strategies is equal to
∑

s w(s) =
∏n

i=1[φ + (1− φ)] = 1.

For every pair p on the blackboard and every strategy s, we define a corresponding cost

coefficient c(p, s): If s scores a point on p, then c(p, s) equals the weight w(s). If s does

not score on p, then c(p, s) equals 0. Let c(p) denote the the sum of of coefficients c(p, s)

taken over all s. Now consider a fixed pair p = (x, y):

(a) In this case, we assume that x = y = aj. Then every strategy that underlines aj

scores a point on this pair. Then c(p) = φ
∏n

i 6=j[φ + (1− φ)] = φ.

(b) In this case, we assume that x 6= y. We have

c(p) =





φ2 + φ(1− φ) + (1− φ)φ = 3φ− 1, (x, y) = (ak, a`);
φ(1− φ) + (1− φ)φ + (1− φ)2 = φ, (x, y) = (−ak,−a`);
φ2 + φ(1− φ) + (1− φ)2 = 2− 2φ, (x, y) = (±ak,∓a`).

By noting that φ ≈ 0.618, we can easily conclude that c(p) ≥ φ.

We let C denote the sum of the coefficients c(p, s) taken over all p and s. These observations

yield that

C =
∑
p,s

c(p, s) =
∑

p

c(p) ≥
∑

p

φ = 68φ > 42.

Suppose for the sake of contradiction that every strategy s scores at most 42 points.

Then every s contributes at most 42w(s) to C, and we get C ≤ 42
∑

s w(s) = 42, which

contradicts C > 42.

To complete our proof, we now show that we cannot always get 44 points. Consider the

blackboard contains the following 68 pairs: For each of m = 1, . . . , 8, five pairs of (m, m)

(for a total of 40 pairs of type (a)); For every 1 ≤ m < n ≤ 8, one pair of (−m,−n) (for a

total of
(
8
2

)
= 28 pairs of type (b)). We claim that we cannot get 44 points from this initial

stage. Indeed, assume that exactly k of the integers 1, 2, . . . , 8 are underlined. Then we

get at most 5k points on the pairs of type (a), and at most 28 − (
k
2

)
points on the pairs

of type (b). We can get at most 5k + 28 − (
k
2

)
points. Note that the quadratic function

5k + 28− (
k
2

)
= −k2

2
+ 11k

2
+ 28 obtains its maximum 43 (for integers k) at k = 5 or k = 6.

Thus, we can get at most 43 points with this initial distribution, establishing our claim

and completing our solution.

This problem was suggested by Zuming Feng.
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§0 Problems

1. Let AXY ZB be a convex pentagon inscribed in a semicircle of diameter AB.
Denote by P , Q, R, S the feet of the perpendiculars from Y onto lines AX, BX,
AZ, BZ, respectively. Prove that the acute angle formed by lines PQ and RS is
half the size of ∠XOZ, where O is the midpoint of segment AB.

2. There are n students standing in a circle, one behind the other. The students have
heights h1 < h2 < · · · < hn. If a student with height hk is standing directly behind
a student with height hk−2 or less, the two students are permitted to switch places.
Prove that it is not possible to make more than

(
n
3

)
such switches before reaching a

position in which no further switches are possible.

3. The 2010 positive real numbers a1, a2, . . . , a2010 satisfy the inequality aiaj ≤ i + j
for all 1 ≤ i < j ≤ 2010. Determine, with proof, the largest possible value of the
product a1a2 . . . a2010.

4. Let ABC be a triangle with ∠A = 90◦. Points D and E lie on sides AC and AB,
respectively, such that ∠ABD = ∠DBC and ∠ACE = ∠ECB. Segments BD and
CE meet at I. Determine whether or not it is possible for segments AB, AC, BI,
ID, CI, IE to all have integer lengths.

5. Let q = 3p−5
2 where p is an odd prime, and let

Sq =
1

2 · 3 · 4 +
1

5 · 6 · 7 + · · ·+ 1

q(q + 1)(q + 2)
.

Prove that if 1
p − 2Sq = m

n for integers m and n, then m− n is divisible by p.

6. There are 68 ordered pairs (not necessarily distinct) of nonzero integers on a
blackboard. It’s known that for no integer k does both (k, k) and (−k,−k) appear.
A student erases some of the 136 integers such that no two erased integers have sum
zero, and scores one point for each ordered pair with at least one erased integer.
What is the maximum possible score the student can guarantee?
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§1 USAMO 2010/1, proposed by Zuming Feng

Let AXY ZB be a convex pentagon inscribed in a semicircle of diameter AB. Denote by P , Q, R,

S the feet of the perpendiculars from Y onto lines AX, BX, AZ, BZ, respectively. Prove that

the acute angle formed by lines PQ and RS is half the size of ∠XOZ, where O is the midpoint

of segment AB.

Let T be the foot from Y to AB. Then the Simson line implies that lines PQ and RS
meet at T .

A B

X

Y
Z

P

Q
R

S

T

Now it’s straightforward to see APY RT is cyclic (in the circle with diameter AY ),
and therefore

∠RTY = ∠RAY = ∠ZAY.

Similarly,
∠Y TQ = ∠Y BQ = ∠Y BX.

Summing these gives ∠RTQ is equal to half the measure of arc X̂Z as needed.
(Of course, one can also just angle chase; the Simson line is not so necessary.)
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§2 USAMO 2010/2, proposed by David Speyer

There are n students standing in a circle, one behind the other. The students have heights

h1 < h2 < · · · < hn. If a student with height hk is standing directly behind a student with height

hk−2 or less, the two students are permitted to switch places. Prove that it is not possible to

make more than
(
n
3

)
such switches before reaching a position in which no further switches are

possible.

The main claim is the following observation, which is most motivated in the situation
j − i = 2.

Claim — The students with heights hi and hj switch at most |j − i| − 1 times.

Proof. By induction on d = |j − i|, assuming j > i. For d = 1 there is nothing to prove.
For d ≥ 2, look at only students hj , hi+1 and hi ignoring all other students. After hj

and hi switch the first time, the relative ordering of the students must be hi → hj → hi+1.
Thereafter hj must always switch with hi+1 before switching with hi, so the inductive
hypothesis applies to give the bound 1 + j − (i + 1)− 1 = j − i− 1.

Hence, the number of switches is at most∑
1≤i<j≤n

(|j − i| − 1) =

(
n

3

)
.
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§3 USAMO 2010/3, proposed by Gabriel Carroll

The 2010 positive real numbers a1, a2, . . . , a2010 satisfy the inequality aiaj ≤ i + j for all

1 ≤ i < j ≤ 2010. Determine, with proof, the largest possible value of the product a1a2 . . . a2010.

The answer is 3 × 7 × 11 × · · · × 4019, which is clearly an upper bound (and it’s
not too hard to show this is the lowest number we may obtain by multiplying 1005
equalities together; this is essentially the rearrangement inequality). The tricky part is
the construction. Intuitively we want ai ≈

√
2i, but the details require significant care.

Note that if this is achievable, we will require anan+1 = 2n + 1 for all odd n. Here are
two constructions:

• One can take the sequence such that a2008a2010 = 4028 and anan+1 = 2n + 1 for
all n = 1, 2, . . . , 2009. This can be shown to work by some calculation. As an
illustrative example,

a1a4 =
a1a2 · a3a4

a2a3
=

3 · 7
5

< 5.

• In fact one can also take an =
√

2n for all even n (and hence an−1 =
√

2n− 1√
2n

for such even n).

Remark. This is a chief example of an “abstract” restriction-based approach. One can
motivate it in three steps:

• The bound 3 · 7 · · · · · 4019 is provably best possible upper bound by pairing the
inequalities; also the situation with 2010 replaced by 4 is constructible with bound 21.

• We have an ≈
√

2n heuristically; in fact an =
√

2n satisfies inequalities by AM-GM.

• So we are most worried about aiaj ≤ i + j when |i− j| is small, like |i− j| = 1.

I then proceeded to spend five hours on various constructions, but it turns out that the right
thing to do was just require akak+1 = 2k + 1, to make sure these pass: and the problem
almost solves itself.

Remark. When 2010 is replaced by 4 it is not too hard to manually write an explicit

example: say a1 =
√
3

1.1 , a2 = 1.1
√

3, a3 =
√
7

1.1 and a4 = 1.1
√

7. So this is a reason one might
guess that 3× 7× · · · × 4019 can actually be achieved in the large case.

Remark. Victor Wang says: I believe we can actually prove that WLOG (!) assume
aiai+1 = 2i + 1 for all i (but there are other ways to motivate that as well, like linear
programming after taking logs), which makes things a bit simpler to think about.
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§4 USAMO 2010/4, proposed by Zuming Feng

Let ABC be a triangle with ∠A = 90◦. Points D and E lie on sides AC and AB, respectively,

such that ∠ABD = ∠DBC and ∠ACE = ∠ECB. Segments BD and CE meet at I. Determine

whether or not it is possible for segments AB, AC, BI, ID, CI, IE to all have integer lengths.

The answer is no. We prove that it is not even possible that AB, AC, CI, IB are all
integers.

B

A C

I

D

E

First, we claim that ∠BIC = 135◦. To see why, note that

∠IBC + ∠ICB =
∠B
2

+
∠C
2

=
90◦

2
= 45◦.

So, ∠BIC = 180◦ − (∠IBC + ∠ICB) = 135◦, as desired.
We now proceed by contradiction. The Pythagorean theorem implies

BC2 = AB2 + AC2

and so BC2 is an integer. However, the law of cosines gives

BC2 = BI2 + CI2 − 2BI · CI cos∠BIC

= BI2 + CI2 −BI · CI ·
√

2.

which is irrational, and this produces the desired contradiction.
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§5 USAMO 2010/5, proposed by Titu Andreescu

Let q = 3p−5
2 where p is an odd prime, and let

Sq =
1

2 · 3 · 4 +
1

5 · 6 · 7 + · · ·+ 1

q(q + 1)(q + 2)
.

Prove that if 1
p − 2Sq = m

n for integers m and n, then m− n is divisible by p.

By partial fractions, we have

2

(3k − 1)(3k)(3k + 1)
=

1

3k − 1
− 2

3k
+

1

3k + 1
.

Thus

2Sq =

(
1

2
− 2

3
+

1

4

)
+

(
1

5
− 2

6
+

1

7

)
+ · · ·+

(
1

q
− 2

q + 1
+

1

q + 2

)
=

(
1

2
+

1

3
+

1

4
+ · · ·+ 1

q + 2

)
− 3

(
1

3
+

1

6
+ · · ·+ 1

q + 1

)
=

(
1

2
+

1

3
+

1

4
+ · · ·+ 1

q + 2

)
−
(

1

1
+

1

2
+ · · ·+ 1

q+1
3

)

=⇒ 2Sq −
1

p
+ 1 =

(
1

1
+

1

2
+ · · ·+ 1

p− 1

)
+

(
1

p + 1
+

1

p + 2
· · ·+ 1

q + 2

)
−
(

1

1
+

1

2
+ · · ·+ 1

q+1
3

)

Now we are ready to take modulo p. The given says that q − p + 2 = q+1
3 , so

2Sq −
1

p
+ 1 =

(
1

1
+

1

2
+ · · ·+ 1

p− 1

)
+

(
1

p + 1
+

1

p + 2
+ · · ·+ 1

q + 2

)
−
(

1

1
+

1

2
+ · · ·+ 1

q+1
3

)

≡
(

1

1
+

1

2
+ · · ·+ 1

p− 1

)
+

(
1

1
+

1

2
+ · · ·+ 1

q − p + 2

)
−
(

1

1
+

1

2
+ · · ·+ 1

q+1
3

)
=

1

1
+

1

2
+ · · ·+ 1

p− 1

≡ 0 (mod p).

So 1
p − 2Sq ≡ 1 (mod p) which is the desired.
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§6 USAMO 2010/6, proposed by Zuming Feng and Paul Zeitz

There are 68 ordered pairs (not necessarily distinct) of nonzero integers on a blackboard. It’s

known that for no integer k does both (k, k) and (−k,−k) appear. A student erases some of

the 136 integers such that no two erased integers have sum zero, and scores one point for each

ordered pair with at least one erased integer. What is the maximum possible score the student

can guarantee?

The answer is 43.
The structure of this problem is better understood as follows: we construct a multigraph

whose vertices are the entries, and the edges are the 68 ordered pairs on the blackboard.
To be precise, construct a multigraph G with vertices a1, b1, . . . , an, bn, with ai = −bi
for each i. The ordered pairs then correspond to 68 edges in G, with self-loops allowed
(WLOG) only for vertices ai. The student may then choose one of {ai, bi} for each i and
wishes to maximize the number of edges adjacent to the set of chosen vertices.

3

7

8

2

−3

−7

−8

−2

First we use the probabilistic method to show N ≥ 43. We select the real number

p =
√
5−1
2 ≈ 0.618 satisfying p = 1− p2. For each i we then select ai with probability p

and bi with probability 1− p. Then

• Every self-loop (ai, ai) is chosen with probability p.

• Any edge (bi, bj) is chosen with probability 1− p2.

All other edges are selected with probability at least p, so in expectation we have
68p ≈ 42.024 edges scored. Hence N ≥ 43.

For a construction showing 43 is optimal, we let n = 8, and put five self-loops on each
ai, while taking a single K8 on the bi’s. The score achieved for selecting m of the ai’s
and 8−m of the bi’s is

5m +

((
8

2

)
−
(
m

2

))
≤ 43

with equality when either m = 5 and m = 6.

Remark (Colin Tang). Here is one possible motivation for finding the construction. In
equality case we probably want all the edges to either be ai loops or bibj edges. Now if
bi and bj are not joined by an edge, one can “merge them together”, also combining the
corresponding ai’s, to get another multigraph with 68 edges whose optimal score is at most
the original ones. So by using this smoothing algorithm, we can reduce to a situation where
the bi and bj are all connected to each other.

It’s not unnatural to assume it’s a clique then, at which point fiddling with parameters
gives the construction. Also, there is a construction for d2/3ne which is not too difficult to

8
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find, and applying this smoothing operation to this construction could suggest a clique of at
least 8 vertices too.

Remark (David Lee). One could consider changing the probability p(n) to be a function of
the number n of non-loops (hence there are 68− n loops); we would then have

E[points] = (68− n)p(n) + n(1− p(n)2).

The optimal value of p(n) is then

p(n) =

{
68−n
2n = 34

n − 1
2 n ≥ 23

1 n < 22.

For n > 23 we then have

E(n) =(68− n)

(
34

n
− 1

2

)
+ n

(
1−

(
34

n
− 1

2

)2
)

=
5n

4
+

342

n
− 34

which has its worst case at around 5n2 = 682, so at n = 30 and n = 31. Indeed, one can find

E(30) = 42.033

E(31) = 42.040.

This gives another way to get the lower bound 43, and gives a hint about approximately
how many non-loops one would want in order to achieve such a bound.
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40th United States of America Mathematical Olympiad

Day I 12:30 PM – 5 PM EDT

April 27, 2011

USAMO 1. Let a, b, c be positive real numbers such that a2 + b2 + c2 + (a+ b+ c)2 ≤ 4. Prove that

ab+ 1

(a+ b)2
+

bc+ 1

(b+ c)2
+

ca+ 1

(c+ a)2
≥ 3 .

USAMO 2. An integer is assigned to each vertex of a regular pentagon so that the sum of the five

integers is 2011. A turn of a solitaire game consists of subtracting an integer m from each

of the integers at two neighboring vertices and adding 2m to the opposite vertex, which

is not adjacent to either of the first two vertices. (The amount m and the vertices chosen

can vary from turn to turn.) The game is won at a certain vertex if, after some number

of turns, that vertex has the number 2011 and the other four vertices have the number 0.

Prove that for any choice of the initial integers, there is exactly one vertex at which the

game can be won.

USAMO 3. In hexagon ABCDEF , which is nonconvex but not self-intersecting, no pair of opposite

sides are parallel. The internal angles satisfy ∠A = 3∠D, ∠C = 3∠F , and ∠E = 3∠B.

Furthermore AB = DE, BC = EF , and CD = FA. Prove that diagonals AD, BE, and

CF are concurrent.

Copyright c⃝ Committee on the American Mathematics Competitions,
Mathematical Association of America



40th United States of America Mathematical Olympiad

Day II 12:30 PM – 5 PM EDT

April 28, 2011

USAMO 4. Consider the assertion that for each positive integer n ≥ 2, the remainder upon dividing 22
n

by 2n−1 is a power of 4. Either prove the assertion or find (with proof) a counterexample.

USAMO 5. Let P be a given point inside quadrilateral ABCD. Points Q1 and Q2 are located within

ABCD such that

∠Q1BC = ∠ABP, ∠Q1CB = ∠DCP, ∠Q2AD = ∠BAP, ∠Q2DA = ∠CDP.

Prove that Q1Q2 ∥ AB if and only if Q1Q2 ∥ CD.

USAMO 6. Let A be a set with |A| = 225, meaning that A has 225 elements. Suppose further

that there are eleven subsets A1, . . . , A11 of A such that |Ai| = 45 for 1 ≤ i ≤ 11 and

|Ai ∩ Aj| = 9 for 1 ≤ i < j ≤ 11. Prove that |A1 ∪ A2 ∪ · · · ∪ A11| ≥ 165, and give an

example for which equality holds.

Copyright c⃝ Committee on the American Mathematics Competitions,
Mathematical Association of America
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1. The given condition is equivalent to a2 + b2 + c2 + ab+ bc+ ca ≤ 2. We will prove that

2ab+ 2

(a+ b)2
+

2bc+ 2

(b+ c)2
+

2ca+ 2

(c+ a)2
≥ 6 .

Indeed, we have

2ab+ 2

(a+ b)2
≥ 2ab+ a2 + b2 + c2 + ab+ bc+ ca

(a+ b)2
= 1 +

(c+ a)(c+ b)

(a+ b)2
.

Adding the last inequality with its cyclic analogous forms yields

2ab+ 2

(a+ b)2
+

2bc+ 2

(b+ c)2
+

2ca+ 2

(c+ a)2
≥ 3 +

(c+ a)(c+ b)

(a+ b)2
+

(a+ b)(a+ c)

(b+ c)2
+

(b+ c)(b+ a)

(c+ a)2

Hence it remains to prove that

(c+ a)(c+ b)

(a+ b)2
+

(a+ b)(a+ c)

(b+ c)2
+

(b+ c)(b+ a)

(c+ a)2
≥ 3.

But this follows directly from the AM–GM inequality. Equality holds if and only if a+b =

b+ c = c+ a, which together with the given condition, shows that it occurs if and only if

a = b = c = 1√
3
.

OR

Set 2x = a + b, 2y = b + c, and 2z = c + a; that is, a = z + x − y, b = x + y − z, and

c = y + z − x. Hence

ab+ 1

(a+ b)2
=

(z + x− y)(x+ y − z) + 1

4x2
=
x2 − (y − z)2 + 1

4x2
=
x2 + 2yz + 1− y2 − z2

4x2
.

On the other hand, the given condition is equivalent to 2a2+2b2+2c2+2ab+2bc+2ca ≤ 4

or (a+ b)2+(b+ c)2+(c+ a)2 ≤ 4; that is, x2+ y2+ z2 ≤ 1 or 1− y2− z2 ≥ x2. It follows

that
ab+ 1

(a+ b)2
=
x2 + 2yz + 1− y2 − z2

4x2
≥ x2 + 2yz + x2

4x2
=

1

2
+

yz

2x2
.

Likewise, we have

bc+ 1

(b+ c)2
=

1

2
+
zx

2y2
and

ca+ 1

(c+ a)2
=

1

2
+
xy

2z2
.

1



Adding the last three inequalities gives

ab+ 1

(a+ b)2
+

bc+ 1

(b+ c)2
+

ca+ 1

(c+ a)2
≥ 3

2
+

yz

2x2
+
zx

2y2
+
xy

2z2
≥ 3,

by the AM–GM inequality. Equality holds if and only if x = y = z or a = b = c = 1√
3
.

2. Let a1, a2, a3, a4 and a5 represent the integers at vertices v1 to v5 (in order around the

pentagon) at the start of the game. We will first show that the game can be won at only

one of the vertices. Observe that the quantity a1 + 2a2 + 3a3 + 4a4 mod 5 is an invariant

of the game. For instance, one move involves replacing a1, a3 and a5 by a1 −m, a3 + 2m

and a5 −m. Thus the quantity a1 + 2a2 + 3a3 + 4a4 becomes

(a1 −m) + 2a2 + 3(a3 + 2m) + 4a4 = a1 + 2a2 + 3a3 + 4a4 + 5m,

which is unchanged mod 5. The other moves may be checked similarly. Now suppose that

the game may be won at vertex vj. The value of the invariant at the winning position is

2011j. If the initial value of the invariant is n, then we must have 2011j ≡ n mod 5, or

j ≡ n mod 5. Hence the game may only be won at vertex vj, where j is the least positive

residue of n mod 5.

By renumbering the vertices, we may assume without loss of generality that the winning

vertex is v5. We will show that the game can be won in four moves by adding a suitable

amount 2mj at vertex vj (and subtracting mj from the opposite vertices) on the jth turn

for j = 1, 2, 3, 4. The net change at vertex v1 after these four moves is 2m1 −m3 −m4,

which must equal −a1 if we are to finish with 0 at v1. In this fashion we find that

2m1 −m3 −m4 = −a1
2m2 −m4 = −a2
2m3 −m1 = −a3
2m4 −m1 −m2 = −a4

−m2 −m3 = −a5 + 2011.

The sum of the first four equations is the negative of the fifth equation, so it is redundant.

Multiplying the first four equations by −1, 3, −3, 1 and adding them yields 5m2 − 5m3 =

a1 − 3a2 + 3a3 − a4. But

a1 − 3a2 + 3a3 − a4 ≡ a1 + 2a2 + 3a3 + 4a4 ≡ n ≡ 5 ≡ 0 mod 5,

2



since we are assuming v5 is the winning vertex. Therefore we may divide by 5 to obtain

m2 − m3 = 1
5
(a1 − 3a2 + 3a3 − a4). We also know that m2 + m3 = a1 + a2 + a3 + a4,

and one easily confirms that the right-hand sides of these equations are integers with the

same parity. Hence the system admits an integral solution for m2 and m3. The second

and third equations then quickly give integer values for m1 and m4 as well, so it is indeed

possible to win the game at vertex v5.

3. We first give a recipe for constructing hexagons as in the problem statement. Let ACE

be a triangle, with all angles less than 2π/3. Let D be the reflection of A across CE;

let F be the reflection of C across EA; let B be the reflection of E across AC. Then,

∠BAF = ∠BAC + ∠CAE + ∠EAF = 3∠CAE = 3∠CDE, and similarly for the other

angle equalities. Also, AB = AE = DE, and similarly for the other side equalities. Thus,

the hexagon satisfies the equations in the problem statement. The diagonals AD,BE,CF

are simply the altitudes of the triangle ACE, so they are concurrent at the orthocenter.

Now we show that the only possible hexagons meeting the conditions of the problem

statement are the ones constructed in this manner. This will suffice to complete the

solution.

Given the hexagon ABCDEF as in the problem statement, let β, δ, ϕ be the measures of

its angles B,D, F . Since 4(∠B + ∠D + ∠F ) = ∠A+ ∠B + ∠C + ∠D + ∠E + ∠F = 4π,

we must have β + δ + ϕ = π. Also, the fact that opposite sides are not parallel implies

that π + 2β = ∠D + ∠E + ∠F ̸= 2π, so β ̸= π/2; likewise δ, ϕ ̸= π/2.

We can construct a hexagon A1B1C1D1E1F1 meeting the angle and side equality condi-

tions, with angles ∠B1 = β,∠D1 = δ,∠F1 = ϕ, by taking A1C1E1 to be a triangle with

angles β, δ, ϕ, and reflecting each vertex across the opposite site as above. We wish to

show that ABCDEF ∼ A1B1C1D1E1F1.

Treat the positions of A,B as fixed, and treat β, δ, ϕ as fixed; these are enough to uniquely

determine the orientation of each edge of the hexagon, given the known angles. Let

x = AB = DE, y = BC = EF , z = CD = FA. Our goal is to show that these lengths

are uniquely determined (up to scale) by the given angles.

Let a, b, c, d, e, f be unit vectors in the directions of the edges from A to B, B to C, C to

D, D to E, E to F , and F to A, respectively. Then the vector identity

x(a+ d) + y(b+ e) + z(c+ f) = 0 (1)

3



holds. Without loss of generality, assume the vertices of ABCDEF are labeled in coun-

terclockwise order. The respective orientations of vectors b, c, d, e, f , measured counter-

clockwise relative to a, are
b : π − β
c : −β − 3ϕ
d : −2ϕ
e : π + 2δ − β
f : 2δ − ϕ− β

(These angles are given modulo 2π; we have made liberal use of the identity β+δ+ϕ = π.)

Now, whenever two unit vectors point in directions θ and ψ, which do not differ by π, then

their sum is a nonzero vector pointing in direction (θ + ψ)/2 or (θ + ψ)/2 + π. It follows

that vectors a+d, b+e, c+f are all nonzero and point in the following directions (modulo

π):
a+ d : −ϕ
b+ e : δ − β
c+ f : δ − 2ϕ− β

None of the differences between these angles are multiples of π. (This follows from the fact

that β, δ, ϕ ̸= π/2.) Thus, a+d, b+e, c+f are not collinear, nonzero vectors. Consequently,

the equation (1) determines the coefficients x, y, z uniquely up to scale, as required.

It follows that ABCDEF and A1B1C1D1E1F1 are similar to each other, as required, and

this completes the proof.

4. The assertion is false, and the smallest n for which it fails is n = 25. Given n ≥ 2, let r

be the remainder when 2n is divided by n. Then 2n = kn+ r where k is a positive integer

and 0 ≤ r < n. It follows that

22
n

= 2kn+r ≡ 2r mod 2n − 1,

and 2r < 2n − 1 so 2r is the remainder when 22
n
is divided by 2n − 1. If r is even then

2r is power of 4. Hence to disprove the assertion, it is enough to find an n for which the

corresponding r is odd.

If n is even then so is r = 2n − kn.

If n is an odd prime then 2n ≡ 2 (mod n) by Fermat’s Little Theorem; hence r ≡ 2n ≡ 2

mod n and r = 2.

4



There remains the case in which n is odd and composite. In the first three instances n = 9,

15, 21 there is no contradiction to the assertion:

n = 9 :26 ≡ 1 mod 9 ⇒ 29 ≡ 26 · 23 ≡ 8 mod 9

n = 15 :24 ≡ 1 mod 15 ⇒ 215 ≡ (24)3 · 23 ≡ 8 mod 15

n = 21 :26 ≡ 1 mod 21 ⇒ 221 ≡ (26)3 · 23 ≡ 8 mod 21

However,

210 = 1024 ≡ −1 ⇒ 220 ≡ 1 ⇒ 225 ≡ 25 ≡ 7 mod 25,

so 7 is the remainder when 225 is divided by 25 and 27 is the remainder when 22
25
is divided

by 225 − 1.

5. We will prove that the lines AB, CD, and Q1Q2 are either concurrent or all parallel. Let

X and Y denote the reflections of P across the lines AB and CD. We first claim that

XQ1 = Y Q1 and XQ2 = Y Q2. Indeed, let Z be the reflection of Q1 across BC. Then

XB = PB, BQ1 = BZ, and

∠XBQ1 = ∠XBA+ ∠ABQ1 = ∠ABC = ∠PBC + ∠CBZ = ∠PBZ,

whence △XBQ1
∼= △PBZ and thus XQ1 = PZ. Similarly Y Q1 = PZ, and so XQ1 =

Y Q1. In exactly the same way, we see that XQ2 = Y Q2, establishing the claim.

We conclude that the line Q1Q2 is the perpendicular bisector of the segment XY . If

AB ∥ CD, then XY ⊥ AB and it follows that Q1Q2 ∥ AB, as desired. If the lines AB

and CD are not parallel, then let R denote their intersection. Since RX = RP = RY , R

lies on the perpendicular bisector of XY and thus R, Q1, Q2 are collinear, as desired.

OR

This solution uses isogonal conjugates. Recall that two points S, T are isogonal conjugates

with respect to △ABC if ∠SAB = ∠CAT , ∠SBC = ∠ABT , and ∠SCA = ∠BCT , with
any two of these equalities implying the third.

5



If AB ∥ CD, then there is nothing to prove; thus we assume AB intersects CD in a point R.

ThenQ1 and P are isogonal conjugates with respect to△RBC, whence ∠Q1RB = ∠CRP ,
and Q2 and P are isogonal conjugates with respect to △RAD, whence ∠Q2RA = ∠DRP .
Therefore ∠Q1RB = ∠Q2RA = ∠Q2RB and the lines AB, CD, Q1Q2 all intersect at R.

Remark: Although not needed for the problem as stated, here is an alternate proof that

if AB ∥ CD, then Q1Q2 is parallel to both. Extend BQ1 and BP to meet CD at points

E and F , respectively. Then ∠BCP = ∠Q1CE and ∠PBC = ∠ABQ1 = ∠CEQ1, and

so △PBC ∼ △Q1EC, whence PC/PB = Q1C/Q1E. Similarly △Q1BC ∼ △PFC and

PC/PF = Q1C/Q1B. We conclude that Q1B/Q1E = PF/PB. Similarly, extend AQ2

and AP to meet CD at G and H; then Q2A/Q2G = PH/PA = PF/PB = Q1B/Q1E,

and it follows that Q1Q2 ∥ AB ∥ CD.

6. Let S be the complement of A1 ∪A2 ∪ · · · ∪A11 in A; we wish to prove that |S| ≤ 60. For

ℓ ≥ 0, define

θ(ℓ) =

(
1− ℓ

2

)(
1− ℓ

3

)
= 1− 2

3
ℓ+

1

3

(
ℓ

2

)
.

Note that θ(0) = 1 and θ(ℓ) ≥ 0 for any integer ℓ > 0. Therefore, since S is the intersection

of the complements of the Ai,

|S| ≤
∑
n∈A

θ(ℓ(n)).

On the other hand,∑
n∈A

θ(ℓ(n)) =
∑
n∈A

(
1− 2

3
ℓ(n) +

1

3

(
ℓ(n)

2

))
= |A| − 2

3

∑
i

|Ai|+
1

3

∑
i<j

|Ai ∩ Aj|.

Consequently,

|S| ≤ 225− 2

3
· 11 · 45 + 1

3
·
(
11

2

)
· 5 = 60,

and therefore |A1 ∪ A2 ∪ · · · ∪ A11| ≥ 165.

We construct an example to show that this lower bound is best possible. Let p1, p2, . . . , p11

be a set of 11 distinct primes, and let A′ denote the set of all products of three of these

primes. Furthermore, let A′′ = {q1, q2, q3, . . . , q60} be a set of 60 distinct positive integers

that are all prime to p1, . . . , p11. Set A = A′ ∪ A′′, and define

Ai = {n ∈ A′ : pi |n}.

6



Then |Ai| =
(
10
2

)
= 45, |Ai ∩ Aj| =

(
9
1

)
= 9, and

|A1 ∪ A2 ∪ · · · ∪ A11| = |A′| =
(
11

3

)
= 165.

Finally, |A| = |A′|+ |A′′| = 165 + 60 = 225.

Remark: To get an upper bound for |S|, one could replace θ(ℓ) by any function of the

form (
1− ℓ

r

)(
1− ℓ

r + 1

)
for any positive integer r. The choice r = 2 is optimal for the stated problem. The choice

r = 1 yields

|S| ≤ |A| −
∑
i

|Ai|+
∑
i<j

|Ai ∩ Aj|,

which is a familiar truncated inclusion-exclusion inequality, known in number theory as

“Brun’s Pure Sieve” and in probability as “Bonferroni’s Inequality.”

Copyright c⃝ Committee on the American Mathematics Competitions,
Mathematical Association of America
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USAMO 2011 Solution Notes web.evanchen.cc, updated April 17, 2020

§0 Problems

1. Let a, b, c be positive real numbers such that a2 + b2 + c2 + (a+ b+ c)2 ≤ 4. Prove
that

ab+ 1

(a+ b)2
+

bc+ 1

(b+ c)2
+

ca+ 1

(c+ a)2
≥ 3.

2. An integer is assigned to each vertex of a regular pentagon so that the sum of the
five integers is 2011. A turn of a solitaire game consists of subtracting an integer m
from each of the integers at two neighboring vertices and adding 2m to the opposite
vertex, which is not adjacent to either of the first two vertices. (The amount m
and the vertices chosen can vary from turn to turn.) The game is won at a certain
vertex if, after some number of turns, that vertex has the number 2011 and the
other four vertices have the number 0. Prove that for any choice of the initial
integers, there is exactly one vertex at which the game can be won.

3. In hexagon ABCDEF , which is nonconvex but not self-intersecting, no pair of
opposite sides are parallel. The internal angles satisfy ∠A = 3∠D, ∠C = 3∠F ,
and ∠E = 3∠B. Furthermore AB = DE, BC = EF , and CD = FA. Prove that
diagonals AD, BE, and CF are concurrent.

4. Consider the assertion that for each positive integer n ≥ 2, the remainder upon
dividing 22

n
by 2n − 1 is a power of 4. Either prove the assertion or find (with

proof) a counterexample.

5. Let P be a point inside convex quadrilateral ABCD. Points Q1 and Q2 are located
within ABCD such that

∠Q1BC = ∠ABP, ∠Q1CB = ∠DCP,

∠Q2AD = ∠BAP, ∠Q2DA = ∠CDP.

Prove that Q1Q2 ‖ AB if and only if Q1Q2 ‖ CD.

6. Let A be a set with |A| = 225, meaning that A has 225 elements. Suppose further
that there are eleven subsets A1, . . . , A11 of A such that |Ai| = 45 for 1 ≤ i ≤ 11
and |Ai ∩Aj | = 9 for 1 ≤ i < j ≤ 11. Prove that |A1 ∪A2 ∪ . . . ∪A11| ≥ 165, and
give an example for which equality holds.
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§1 USAMO 2011/1

Let a, b, c be positive real numbers such that a2 + b2 + c2 + (a+ b+ c)2 ≤ 4. Prove that

ab+ 1

(a+ b)2
+

bc+ 1

(b+ c)2
+

ca+ 1

(c+ a)2
≥ 3.

The condition becomes 2 ≥ a2 + b2 + c2 + ab+ bc+ ca. Therefore,∑
cyc

2ab+ 2

(a+ b)2
≥
∑
cyc

2ab+ (a2 + b2 + c2 + ab+ bc+ ca)

(a+ b)2

=
∑
cyc

(a+ b)2 + (c+ a)(c+ b)

(a+ b)2

= 3 +
∑
cyc

(c+ a)(c+ b)

(a+ b)2

≥ 3 + 3 3

√√√√∏
cyc

(c+ a)(c+ b)

(a+ b)2
= 3 + 3 = 6

with the last line by AM-GM. This completes the proof.
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§2 USAMO 2011/2, proposed by Sam Vandervelde

An integer is assigned to each vertex of a regular pentagon so that the sum of the five integers is

2011. A turn of a solitaire game consists of subtracting an integer m from each of the integers at

two neighboring vertices and adding 2m to the opposite vertex, which is not adjacent to either of

the first two vertices. (The amount m and the vertices chosen can vary from turn to turn.) The

game is won at a certain vertex if, after some number of turns, that vertex has the number 2011

and the other four vertices have the number 0. Prove that for any choice of the initial integers,

there is exactly one vertex at which the game can be won.

Call the vertices 0, 1, 2, 3, 4 in order. First, notice that the quantityN1+2N2+3N3+4N4

(mod 5) is invariant, where Ni is the amount at vertex i. This immediately implies that
at most one vertex can win, since in a winning situation all Ni are 0 except for one,
which is 2011.

Now we prove we can win on this unique vertex. Let ai, xi denote the number initially
at i and xi denote

∑
m over all m where vertex i gains 2m. WLOG the possible vertex

is 0, meaning a1 + 2a2 + 3a3 + 4a4 ≡ 0 (mod 5). Moreover we want

2011 = a0 + 2x0 − x2 − x3
0 = a1 + 2x1 − x3 − x4
0 = a2 + 2x2 − x4 − x0
0 = a3 + 2x3 − x0 − x1
0 = a4 + 2x4 − x1 − x2.

We can ignore the first equation since its the sum of the other four. Moreover, we can
WLOG shift x0 → 0 by shifting each xi by a fixed amount. Then

x4 = 2x2 + a2 and x1 = 2x3 + a3.

We let p and q denote x2 and x3 (noting that p, q ∈ Z =⇒ x1, x4 ∈ Z). Anyways the
system now expands as

2p− 3q = 2a3 + a1 − a2 and 2q − 3p = 2a2 + a4 − a3

whence we have a two-var system, easy! We compute

p− q =
1

5
[a1 − 3a2 + 3a3 − a4] .

This is an integer by the condition, whence so are p and q, QED.

4
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§3 USAMO 2011/3

In hexagon ABCDEF , which is nonconvex but not self-intersecting, no pair of opposite sides

are parallel. The internal angles satisfy ∠A = 3∠D, ∠C = 3∠F , and ∠E = 3∠B. Furthermore

AB = DE, BC = EF , and CD = FA. Prove that diagonals AD, BE, and CF are concurrent.

We present the official solution. We say a hexagon is satisfying if it obeys the six
conditions; note that intuitively we expect three degrees of freedom for satisfying hexagons.

Main idea:

Claim — In a satisfying hexagon, B, D, F are reflections of A, C, E across the
sides of 4ACE.

(This claim looks plausible because every excellent hexagon is satisfying, and both
configuration spaces are three-dimensional.) Call a hexagon of this shape “excellent”; in
a excellent hexagon the diagonals clearly concur (at the orthocenter).

Set β = ∠B, δ = ∠D, ϕ = ∠F .
Now given a satisfying hexagonABCDEF , construct a “phantom hexagon”A′B′C ′D′E′F ′

with the same angles which is excellent (see figure). This is possible since β+δ+ϕ = 180◦.

β

δ

ϕ

β

δ

ϕ

βϕ

δ

A′

C ′ E′

B′

D′

F ′

AB

C

D

E

F

Then it would suffice to prove that:

Lemma

A satisfying hexagon is uniquely determined by its angles up to similarity. That is,
at most one hexagon (up to similarity) has angles β, δ, γ as above.

Proof. Consider any two satisfying hexagons ABCDEF and A′B′C ′D′E′F ′ (not neces-
sarily as constructed above!) with the same angles. We show they are similar.

To do this, consider the unit complex numbers in the directions
−−→
BA and

−−→
DE respectively

and let ~x denote their sum. Define ~y, ~z similarly. Note that the condition AB 6‖ DE
implies ~x 6= 0, and similarly. Then we have the identities

AB · ~x+ CD · ~y + EF · ~z = A′B′ · ~x+ C ′D′ · ~y + E′F ′ · ~z = 0.

So we would obtain AB : CD : EF = A′B′ : C ′D′ : E′F ′ if only we could show that
~x, ~y, ~z are not multiples of each other (linear dependency reasons). This is a tiresome
computation with arguments, but here it is.

5
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First note that none of β, δ, ϕ can be 90◦, since otherwise we get a pair of parallel
sides. Now work in the complex plane, fix a reference such that ~A− ~B has argument 0,
and assume ABCDEF are labelled counterclockwise. Then

• ~B − ~C has argument π − β

• ~C − ~D has argument −(β + 3ϕ)

• ~D − ~E has argument π − (β + 3ϕ+ δ)

• ~E − ~F has argument −(4β + 3ϕ+ δ)

So the argument of ~x has argument π−(β+3ϕ+δ)
2 (mod π). The argument of ~y has argument

π−(5β+3ϕ+δ)
2 (mod π). Their difference is 2β (mod π), and since β 6= 90◦, it follows that

~x and ~y are not multiples of each other; the other cases are similar.

Then the lemma implies ABCDEF ∼ A′B′C ′D′E′F and we’re done.

Remark. This problem turned out to be known already. It appears in this reference:

Nikolai Beluhov, Matematika, 2008, issue 6, problem 3.

It was reprinted as Kvant, 2009, issue 2, problem M2130; the reprint is available at
http://kvant.ras.ru/pdf/2009/2009-02.pdf.

Remark. The vector perspective also shows the condition about parallel sides cannot be
dropped. Here is a counterexample from Ryan Kim in the event that it is.

A

C0

E
B0

D0

F

CB

D

By adjusting the figure above so that the triangles are right isosceles (instead of just right),
one also finds an example of a hexagon which is satisfying and whose diagonals are concurrent,
but which is not excellent.

6
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§4 USAMO 2011/4, proposed by Zuming Feng

Consider the assertion that for each positive integer n ≥ 2, the remainder upon dividing 22
n

by

2n − 1 is a power of 4. Either prove the assertion or find (with proof) a counterexample.

We claim n = 25 is a counterexample. Indeed, note that

22
25 ≡ 22

25 (mod 25) ≡ 27 (mod 225)

which isn’t a power of 4, and is actually the remainder since 27 < 225.

7
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§5 USAMO 2011/5

Let P be a point inside convex quadrilateral ABCD. Points Q1 and Q2 are located within ABCD
such that

∠Q1BC = ∠ABP, ∠Q1CB = ∠DCP,

∠Q2AD = ∠BAP, ∠Q2DA = ∠CDP.

Prove that Q1Q2 ‖ AB if and only if Q1Q2 ‖ CD.

If AB ‖ CD there is nothing to prove. Otherwise let X = AB ∩ CD. Then the Qi are
isogonal conjugates of P with respect to triangles XAD, XBC. Thus X, Q1, Q2 are
collinear, on the isogonal of XY with respect to ∠DXA = ∠CXB.

8
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§6 USAMO 2011/6

Let A be a set with |A| = 225, meaning that A has 225 elements. Suppose further that there

are eleven subsets A1, . . . , A11 of A such that |Ai| = 45 for 1 ≤ i ≤ 11 and |Ai ∩ Aj | = 9 for

1 ≤ i < j ≤ 11. Prove that |A1 ∪A2 ∪ . . . ∪A11| ≥ 165, and give an example for which equality

holds.

Ignore the 225 — it is irrelevant.
Denote the elements of A1 ∪ · · · ∪A11 by a1, . . . , an, and suppose that ai appears xi

times among Ai for each 1 ≤ i ≤ n (so 1 ≤ xi ≤ 11). Then we have

11∑
i=1

xi =
11∑
i=1

|Ai| = 45 · 11

and
11∑
i=1

(
xi
2

)
=

∑
1≤i<j≤11

|Ai ∩Aj | =
(

11

2

)
· 9.

Therefore, we deduce that
∑
xi = 495 and

∑
i x

2
i = 1485. Now, by Cauchy Schwarz

n

(∑
i

x2i

)
≥
(∑

xi

)2
which implies n ≥ 4952

1485 = 165.
Equality occurs if we let A consist of the 165 three-element subsets of {1, . . . , 11} (plus

60 of your favorite reptiles). Then we let Ai denote those subsets containing i, of which
there are

(
10
2

)
= 45, and so that |Ai ∩Aj | =

(
9
1

)
= 9.

9
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41st United States of America Mathematical Olympiad

Day I 12:30 PM – 5 PM EDT

April 24, 2012

Note: For any geometry problem, the first page of the solution must be a large, in-scale,
clearly labeled diagram made with drawing instruments (ruler, compass, protractor, graph paper,
carbon paper). Failure to meet any of these requirements will result in a 1-point automatic
deduction.

USAMO 1. Find all integers n ≥ 3 such that among any n positive real numbers a1, a2, ..., an with

max(a1, a2, ..., an) ≤ n ·min(a1, a2, ..., an),

there exist three that are the side lengths of an acute triangle.

USAMO 2. A circle is divided into 432 congruent arcs by 432 points. The points are colored in four
colors such that some 108 points are colored Red, some 108 points are colored Green, some
108 points are colored Blue, and the remaining 108 points are colored Yellow. Prove that
one can choose three points of each color in such a way that the four triangles formed by
the chosen points of the same color are congruent.

USAMO 3. Determine which integers n > 1 have the property that there exists an infinite sequence
a1, a2, a3, . . . of nonzero integers such that the equality

ak + 2a2k + · · ·+ nank = 0

holds for every positive integer k.

Copyright © Mathematical Association of America
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41st United States of America Mathematical Olympiad

Day II 12:30 PM – 5 PM EDT

April 25, 2012

Note: For any geometry problem, the first page of the solution must be a large, in-scale,
clearly labeled diagram made with drawing instruments (ruler, compass, protractor, graph paper,
carbon paper). Failure to meet any of these requirements will result in a 1-point automatic
deduction.

USAMO 4. Find all functions f : Z+ → Z+ (where Z+ is the set of positive integers) such that
f(n!) = f(n)! for all positive integers n and such that m − n divides f(m) − f(n) for all
distinct positive integers m, n.

USAMO 5. Let P be a point in the plane of 4ABC, and γ a line passing through P . Let A′, B′, C ′

be the points where the reflections of lines PA, PB, PC with respect to γ intersect lines
BC, AC, AB, respectively. Prove that A′, B′, C ′ are collinear.

USAMO 6. For integer n ≥ 2, let x1, x2, . . . , xn be real numbers satisfying

x1 + x2 + · · ·+ xn = 0, and x2
1 + x2

2 + · · ·+ x2
n = 1 .

For each subset A ⊆ {1, 2, . . . , n}, define

SA =
∑
i∈A

xi.

(If A is the empty set, then SA = 0.)

Prove that for any positive number λ, the number of sets A satisfying SA ≥ λ is at most
2n−3/λ2. For what choices of x1, x2, . . . , xn, λ does equality hold?

Copyright © Mathematical Association of America
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41st United States of America Mathematical Olympiad

Day I, II 12:30 PM – 5 PM EDT

April 24-25, 2012

USAMO 1. First we prove that any n ≥ 13 is a solution of the problem. Suppose that a1, a2, ..., an

satisfy max(a1, a2, ..., an) ≤ n · min(a1, a2, ..., an), and that we cannot find three that are
the side-lengths of an acute triangle. We may assume that a1 ≤ a2 ≤ ... ≤ an. Then
a2

i+2 ≥ a2
i + a2

i+1 for all i ≤ n− 2. Let (Fn) be the Fibonacci sequence, with F1 = F2 = 1
and Fn+1 = Fn +Fn−1. It is easy to check that Fn < n2 for n ≤ 11, F12 = 122 and Fn > n2

for n > 12 (the last inequality follows by an immediate induction, while the first one can
be checked by hand). The inequality a2

i+2 ≥ a2
i + a2

i+1 and the fact that a1 ≤ a2 ≤ ... ≤ an

imply that a2
i ≥ Fi ·a2

1 for all i ≤ n. Hence, if n ≥ 13, we obtain a2
n > n2 ·a2

1, contradicting
the hypothesis. This shows that any n ≥ 13 is a solution of the problem.

By taking ai =
√

Fi for 1 ≤ i ≤ n, we have max(a1, a2, ..., an) ≤ n ·min(a1, a2, ..., an), for
any n < 13, but it is easy to see that no three ai’s can be the side-lengths of an acute
triangle. Hence the answer to the problem is: all n ≥ 13.

This problem and solution were suggested by Titu Andreescu.

USAMO 2. Let R,G,B, Y denote the sets of Red, Green, Blue, Yellow points, respectively, and let
r, g, b, y denote a generic Red, Green, Blue, Yellow point, respectively. For integers 0 ≤
k ≤ 431, let Tk denote the counterclockwise rotation of

(
360k
432

)
degree around the center of

the circle. Furthermore, for a set S, let |S| denote the number of elements in S.

First, we claim that there is some index i1 such that |Ti1(R) ∩ G| ≥ 28. Indeed, for each
k, set Tk(R) ∩G consists of all Green points that are the images of Red points under the
rotation Tk. Hence the sum

s1 = |T0(R) ∩G|+ |T1(R) ∩G|+ · · ·+ |T431(R) ∩G|

is equal to the number of pairs of points (r, g) such that g = Tk(r) for some k. On the
other hand, for each r and each g, there is a unique rotation Tk with Tk(r) = g, form which
it follows that s1 = 1082 = 11664. Clearly, |T0(R)∩G| = |R∩G| = 0 (because R∩G = ∅).
By the Pigeonhole principle, there is some index i1 such that

|Ti1(R) ∩G| ≥
⌈ s1

431

⌉
=

⌈
11664

431

⌉
= d27.06 . . .e = 28,

establishing our claim. Let RG denote the set Ti1(R) ∩ G, and let rg denote a generic
point in RG.

Second, we claim that there is some index i2 such that |Ti2(RG)∩B| ≥ 8. Again, for each
k, set Tk(RG)∩B consists of all Blue points that are the images of the points in RG under
the rotation Tk. Hence the sum

s2 = |T0(RG) ∩B|+ |T1(RG) ∩B|+ · · ·+ |T431(RG) ∩B|

1



is equal to the number of pairs of points (rg, b) such that b = Tk(rg) for some k. On the
other hand, for each rg and each b, there is a unique rotation Tk with Tk(rg) = b, form
which it follows that s2 ≥ 28 · 108 = 3024. Clearly, RG is a subset of B, which is disjoint
with B, so |T0(RG) ∩ B| = 0. Furthermore, T432−i1 (Ti1) is the identity transformation,
implying that T432−i1 (Ti1(R)) = R and T432−i1(RG) is a subset of R which is disjoint with
B. In particular, |T432−i1(RG) ∩B| = 0. By the Pigeonhole principle, there is some index
i2 such that

|Ti2(RG) ∩B| ≥
⌈ s2

430

⌉
≥

⌈
3024

430

⌉
= d7.0325 . . .e = 8,

establishing our claim. Let RGB denote the set Ti2(RG)∩B, and let rgb denote a generic
point in RGB.

Third, we claim that there is some index i3 such that |Ti3(RGB) ∩ Y | ≥ 3. We repeated
our previous process one more time. We note that

s3 = |T0(RGB) ∩ Y |+ |T1(RGB) ∩ Y |+ · · ·+ |T431(RGB) ∩ Y | ≥ 8 · 108 = 864

and
|T0(RGB) ∩ Y | = |T432−i2(RGB) ∩ Y | = |T432−i2−i1(RGB) ∩ Y | = 0.

By the Pigeonhole principle, there is some index i3 such that

|Ti3(RGB) ∩ Y | ≥
⌈ s3

429

⌉
≥

⌈
864

429

⌉
= d2.01 . . .e = 3,

establishing our claim.

Let y1, y2, y3 be three points in Ti2(RGB) ∩ Y . Then

(y1, y2, y3), (b1, b2, b3) = T432−i3(y1, y2, y3), (g1, g2, g3)

= T432−i3−i2(y1, y2, y3), (r1, r2, r3)

= T432−i3−i2−i1(y1, y2, y3)

are twelve points that we are looking for.

This problem and solution were suggested by Gregory Galperin.

USAMO 3. We will show that the sequence exists for all n ≥ 3.

For n = 2, the sequence cannot exist: If it existed, we would have ak = −2a2k for all k,
from which a1 = (−2)ra2r for all r by induction. Then a1 would have to be divisible by 2r

for all r, which is impossible for a1 6= 0.

Now fix n ≥ 3. We will show that the desired sequence exists. The construction is
basically a repeated application of the Chinese Remainder Theorem, but the details require
substantial care.

First we prove two lemmas.

Lemma 1 It is possible to partition the positive integers into subsets S1, S2, S3, . . . so that
for every positive integer k,

2



(i) the numbers (n− 1)k and nk are in the same subset, and

(ii) the numbers k, 2k, . . . , (n− 2)k are all in strictly earlier subsets than (n− 1)k.

Proof To show this, define a function f from positive integers to positive reals as follows.
Let Pn be the set of primes dividing n. No element of Pn divides n− 1. For any number
k, write its prime factorization k = pe1

1 pe2
2 · · · per

r , and then define

f(k) =
∏

pi /∈Pn

pei
i ·

∏
pi∈Pn

(pei
i )logn(n−1) .

Notice that for every positive integer k,

f((n− 1)k) = (n− 1)f(k) = f(nk) (1)

whereas for each t = 1, 2, . . . , n− 2,

f(tk) ≤ tf(k) < f((n− 1)k). (2)

Also notice that for each k, f(k) ≥ klogn(n−1), which implies that for any fixed C, there can
only be finitely many values of k with f(k) < C. The latter fact means that the elements
of the image of f can be arranged in increasing order, x1 < x2 < x3 < · · · . Now just let
Si = f−1(xi) for each i. The sets Si are a partition of the positive integers, and (1) and
(2) ensure that they satisfy (i) and (ii) respectively.

Lemma 2 Let p, q be relatively prime positive integers and t1, t2, . . . , tr arbitrary integers.
Then it is possible to choose nonzero integers b1, b2, . . . , br+1 such that

pbi + qbi+1 = ti for i = 1, 2, . . . , r. (3)

Proof We first prove existence of a sequence of integers satisfying (3) for each i, by
induction on r. If r = 1, then since p, q are relatively prime, we can find c, d such
that pc + qd = 1. Then, b1 = ct1 and b2 = dt1 satisfy (3). Now suppose we have
b1, . . . , br satisfying (3) for i = 1, 2, . . . , r − 1. If we choose any integer k, and replace
each bi with b′i = bi + (−1)ipi−1qr−ik, then (3) still holds for i = 1, 2, . . . , r − 1, and
pb′r = pbr + (−1)rpr−1k. Since p, q are relatively prime, we can choose k so as to make
pb′r congruent to tr modulo q, and then we take br+1 = (tr − pb′r)/q. Then the numbers
b′1, b

′
2, . . . , b

′
r, br+1 satisfy (3) for i = 1, 2, . . . , r.

This shows that we can find b1, b2, . . . , br+1 satisfying (3), but they may not all be nonzero.
However, once again, we can make the replacements b′i = bi + (−1)ipi−1qr+1−ik for any
integer k, and the new sequence still satisfies (3). By an appropriate choice of k, we can
ensure each b′i is nonzero.

Now both lemmas are proven, and we resume the main proof. We will construct terms of
the sequence inductively, but not in the order a1, a2, . . ..

Suppose S is any set of positive integers, and we have chosen nonzero integers ak for each
k ∈ S. Say that there is a conflict in S if there exists some k such that k, 2k, . . . , nk are
all in S, and

ak + 2a2k + · · ·+ nank 6= 0.

Let S1, S2, . . . be as given by Lemma 1 We will inductively define our sequence as follows:
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(a) Step 1: Choose nonzero values ak for all k ∈ S1 simultaneously, without creating a
conflict in S1.

(b) Step t ≥ 1: Given the values of ak for k ∈ S1 ∪ · · · ∪ St−1 chosen at previous steps,
choose nonzero integers ak for all k ∈ St simultaneously, without creating a conflict
in S1 ∪ · · · ∪ St.

If we can show that each step of this process can indeed be carried out, then it will
eventually define ak for all positive integers k, meeting the required condition

ak + 2a2k + · · ·+ nank = 0 (4)

for all k (since no conflicts are created).

For step 1, Lemma 1 implies we can choose ak arbitrarily for k ∈ S1 without creating
any conflicts, since (n − 1)k, nk /∈ S1 for all k. Now for step t ≥ 1, suppose ak have
been assigned already for all k ∈ S1 ∪ S2 ∪ · · · ∪ St−1. We need to assign ak for k ∈ St

to avoid creating any new conflicts. This just requires that the new assignments satisfy
(4) for all integers k such that (n − 1)k and nk are in St: for any other value k, either
{k, 2k, . . . , nk} 6⊆ S1 ∪ · · · ∪ St so no conflict can be created, or else Lemma 1 implies
{k, 2k, . . . , nk} ⊆ S1 ∪ · · · ∪ St−1 so that the corresponding constraint (4) has been dealt
with at an earlier step.

Thus for each k such that (n− 1)k, nk ∈ St, we have a constraint

(n− 1)a(n−1)k + nank = Xk, (5)

where Xk = −(ak + · · ·+(n−2)a(n−2)k) is determined by the assignments made at previous
steps. We just need to show that it is possible to choose ak for all k ∈ St such that all
these constraints are satisfied.

Form a directed graph whose vertices are the elements of St, with an edge leading from
(n− 1)k to nk whenever both numbers are in St. Then every component of this graph is
either a single vertex or a (directed) path. We wish to show that nonzero integer values
can be assigned to elements of St so that for each edge, the corresponding constraint (5)
is satisfied. It suffices to show this for each component of the graph. If the component
is a single vertex, any nonzero value works. Otherwise, it is a path k1, k2, . . . , kr+1, and
Lemma 2 ensures that we can choose nonzero integer values for ak1 , ak2 , . . . , akr+1 so as to
satisfy (5) for each edge.

This shows that each step of our constructive process can indeed be performed successfully,
and iterating eventually constructs every term of the sequence.

This problem and solution were suggested by Gabriel Carroll.

USAMO 4. There are three solutions: the constant functions 1, 2 and the identity function. Let us
prove that these are the only ones. Consider such a function f and suppose first of all
that there exists a > 2 such that f(a) = a. Then a!, (a!)!, ... are all fixed points of f . So
there is an increasing sequence (an)n≥0 of fixed points. If n is any positive integer, ak − n
divides ak − f(n) = f(ak)− f(n) for all k, and so it also divides f(n)− n for all k. Thus
f(n) = n and since it holds for any n, we are done in this case.
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Now suppose that f has no fixed points greater than 2. Let p > 3 be a prime and observe
that (p−2)! ≡ 1 (mod p) (by Wilson’s theorem), thus f(p−2)!−f(1) = f((p−2)!)−f(1)
is a multiple of p. Clearly f(1) is 1 or 2. As p > 3, the fact that p divides f(p− 2)!− f(1)
implies that f(p−2) < p. Since (p−1)!−f(1) is not a multiple of p (again by Wilson), we
deduce that actually f(p− 2) ≤ p− 2. On the other hand, p− 3 divides f(p− 2)− f(1) ≤
f(p− 2)− 1. Thus either f(p− 2) = f(1) or f(p− 2) = p− 2. As p− 2 > 2, the last case
is excluded and so f(p − 2) = f(1) and this for all primes p > 3. Taking n any positive
integer, we deduce that p − 2 − n divides f(1) − f(n) and this holds for all large primes
p. Thus f(n) = f(1) and f is constant. The conclusion is now clear.

This problem and solution were suggested by Gabriel Dospinescu.

USAMO 5. Solution 1: The proof is split into two cases.
Case 1: P is on the circumcircle of ABC. Then P is the Miquel point of A′, B′, C ′

with respect to ABC. Indeed, because ∠A′B′C ′ = ∠CBA = ∠CPA = ∠A′PC ′, points
P , A′, B′, C ′ are concyclic, and the same can be said for P , A, B′, C ′ and P , A′, B′, C.
Hence ∠CA′B′ = ∠CPB′ = ∠BPC ′ = ∠BA′C ′, so A′B′C ′ are collinear.
Case 2: P is not on the circumcircle of ABC. Let Q be isogonal conjugate of P with
respect to ABC (which is not degenerate).
Claim. Let Q′ be the isogonal conjugate of P with respect to AB′C ′. Then Q = Q′.
Proof of the claim. Note that

∠BQC = ∠BAC + ∠CPB (because P and Q are isogonal conjugates in ABC)

= ∠C ′AB′ + ∠B′PC
′

= ∠C ′Q′B′ (because P and Q are isogonal conjugates in AB′C ′).

Let X, Y , Z denote the reflections of P in sides BC, CA, AB, respectively, and let X ′

denote P ’s reflection in side B′C ′ of triangle AB′C ′. Then ∠ZXY = ∠BQC (because QC
is orthogonal to XY and QB is orthogonal to XZ), whereas ∠ZX ′Y ′ = ∠C ′Q′B′ because
Q′B′ is orthogonal to X ′Y and Q′C ′ is orthogonal to X ′Z and Q′C ′ is orthogonal to X ′Z,
so since ∠C ′Q′B′ = ∠BQC, we get ∠ZXY = ∠ZX ′Y . It follows that X, Y , Z, X ′ are
concyclic. The center of the XY Z-circle is Q while the center of the X ′Y ′Z-circle is Q′.
Thus Q = Q′.

Note. We have made use of the well-known fact that the circumcenter of the triangle
determined by the reflections of a point across the sidelines of another given triangle is
precisely the isogonal conjugate of the point with respect to that triangle. For a proof see
R. A. Johnson, Advanced Euclidean Geometry, 1929 ed., reprinted by Dover, 2007.

Similar arguments show that Q is also the isogonal point of P with respect to triangles
A′BC ′ and A′B′C. Therefore,

∠BC ′A′ = ∠AC ′A′ = ∠AC ′P + ∠PC ′Q + ∠QC ′A′

= ∠QC ′B′ + ∠PC ′Q + ∠BC ′P

= ∠BC ′B′ = ∠AC ′B′.
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This means that A′, B′, C ′ are collinear. �

This problem and solution were suggested by Titu Andreescu and Cosmin Pohoata.

Solution 2: It’s easy to see (say, by law of sines) that

AC ′

BC ′ =
AP sin ∠APC ′

BP sin ∠BPC ′ ,
BA′

CA′ =
BP sin ∠BPA′

CP sin ∠CPA′ ,
CB′

AB′ =
CP sin ∠CPB′

AP sin ∠APB′ .

The construction of A′, B′, C ′ by reflections implies that

sin ∠APC ′ = sin ∠CPA′, sin ∠BPC ′ = sin ∠CPB′, sin ∠BPC ′ = sin ∠CPB′.

Hence,
AC ′

BC ′ ·
BA′

CA′ ·
CB′

AB′ = 1,

and the proof is complete by Menelaus’ theorem.

This second solution was suggested by Li Zhou, Polk State College, Winter Haven FL.

USAMO 6. This problem is a form of Chebyshev’s inequality for random variables. For each set
A ⊆ {1, 2, . . . , n}, define

∆A = 2SA =
∑
i∈A

xi −
∑

i∈{1,2,...,n}\A

xi =
n∑

i=1

εA(i)xi,

where εA(i) = 1 if i ∈ A and −1 otherwise. Squaring, we have

∆2
A =

n∑
i=1

x2
i +

∑
i,j∈{1,...,n}

i6=j

εA(i)εA(j)xixj. (6)

Now sum the ∆2
A’s over all 2n possible choices of A. For each pair i 6= j, there are 2n−2

sets A with i, j ∈ A, and another 2n−2 sets with i, j /∈ A; these sets each contributes a
term of +xixj to the sum in (6). There are also 2n−2 sets A with i ∈ A, j /∈ A, and 2n−2

sets with i /∈ A, j ∈ A. Each of these sets each contributes a term of −xixj to (6). Hence,
xixj appears 2n−1 times with a + sign and 2n−1 times with a − sign. Therefore all of these
terms cancel, and we find ∑

A⊆{1,2,...,n}

∆2
A = 2n(x2

1 + · · ·+ x2
n) = 2n. (7)

Now let λ > 0. There cannot be more than 2n−2/λ2 terms ∆2
A whose value greater than

or equal to 4λ2. If this were not the case, then the sum of these terms would be greater
than 2n, so the sum in (7) would exceed 2n. Hence, there can be at most 2n−2/λ2 sets A
such that |SA| ≥ λ. (Recall that ∆A = 2SA). Moreover, these sets can be arranged into
complementary pairs because SA = −S{1,...,n}\A. In each of these pairs, exactly one of the
two members is positive. Therefore there are at most 2n−3/λ2 sets A with SA ≥ λ.

6



For equality to hold, it must be the case that all positive values of ∆2
A are equal to 4λ2;

otherwise we would again have a contradiction because the sum of all ∆2
A would exceed

2n. In particular, all positive values of ∆2
A must be the same. Thus all positive values of

xA must be the same. This will be the case only if at most one of the xi is positive and
at most one of the xi is negative. Because we must have at least one of each, there must
be exactly one positive term and one negative term. Thus it must be the case that one
xk =

√
2/2 for some k, one is xj = −

√
2/2 for some j 6= k, and all other xi = 0. Then the

assumption that every positive ∆2
A = 4λ2 yields λ =

√
2/2.

Conversely, with the xi and λ as described, we have exactly 2n−2 = 2n−3/λ2 sets A such
that xA ≥ λ (namely, those sets A that contain the

√
2/2 term and do not contain the

−
√

2/2 term.) Thus this is indeed the equality case.

This problem and solution were suggested by Gabriel Carroll.

Copyright © Mathematical Association of America
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§0 Problems

1. Find all integers n ≥ 3 such that among any n positive real numbers a1, a2, . . . ,
an with

max(a1, a2, . . . , an) ≤ n ·min(a1, a2, . . . , an),

there exist three that are the side lengths of an acute triangle.

2. A circle is divided into congruent arcs by 432 points. The points are colored in
four colors such that some 108 points are colored red, some 108 points are colored
green, some 108 points are colored blue, and the remaining 108 points are colored
yellow. Prove that one can choose three points of each color in such a way that the
four triangles formed by the chosen points of the same color are congruent.

3. Determine which integers n > 1 have the property that there exists an infinite
sequence a1, a2, a3, . . . of nonzero integers such that the equality

ak + 2a2k + · · ·+ nank = 0

holds for every positive integer k.

4. Find all functions f : Z+ → Z+ such that f(n!) = f(n)! for all positive integers n
and such that m− n divides f(m)− f(n) for all distinct positive integers m,n.

5. Let P be a point in the plane of 4ABC, and γ a line through P . Let A′, B′, C ′

be the points where the reflections of lines PA,PB,PC with respect to γ intersect
lines BC, CA, AB respectively. Prove that A′, B′, C ′ are collinear.

6. For integer n ≥ 2, let x1, x2, . . . , xn be real numbers satisfying

x1 + x2 + · · ·+ xn = 0 and x21 + x22 + · · ·+ x2n = 1.

For each subset A ⊆ {1, 2, . . . , n}, define SA =
∑

i∈A xi. (If A is the empty set,
then SA = 0.) Prove that for any positive number λ, the number of sets A satisfying
SA ≥ λ is at most 2n−3/λ2. For which choices of x1, x2, . . . , xn, λ does equality
hold?
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§1 USAMO 2012/1, proposed by Titu Andreescu

Find all integers n ≥ 3 such that among any n positive real numbers a1, a2, . . . , an with

max(a1, a2, . . . , an) ≤ n ·min(a1, a2, . . . , an),

there exist three that are the side lengths of an acute triangle.

The answer is all n ≥ 13.
Define (Fn) as the sequence of Fibonacci numbers, by F1 = F2 = 1 and Fn+1 =

Fn + Fn−1. We will find that Fibonacci numbers show up naturally when we work
through the main proof, so we will isolate the following calculation now to make the
subsequent solution easier to read.

Claim — For positive integers m, we have Fm ≤ m2 if and only if m ≤ 12.

Proof. A table of the first 14 Fibonacci numbers is given below.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14

1 1 2 3 5 8 13 21 34 55 89 144 233 377

By examining the table, we see that Fm ≤ m2 is true for m = 1, 2, . . . 12, and in fact
F12 = 122 = 144. However, Fm > m2 for m = 13 and m = 14.

Now it remains to prove that Fm > m2 for m ≥ 15. The proof is by induction with
base cases m = 13 and m = 14 being checked already. For the inductive step, if m ≥ 15
then we have

Fm = Fm−1 + Fm−2 > (m− 1)2 + (m− 2)2

= 2m2 − 6m+ 5 = m2 + (m− 1)(m− 5) > m2

as desired.

We now proceed to the main problem. The hypothesis max(a1, a2, . . . , an) ≤ n ·
min(a1, a2, . . . , an) will be denoted by (†).

Proof that all n ≥ 13 have the property. We first show now that every n ≥ 13
has the desired property. Suppose for contradiction that no three numbers are the sides
of an acute triangle. Assume without loss of generality (by sorting the numbers) that
a1 ≤ a2 ≤ · · · ≤ an. Then since ai−1, ai, ai+1 are not the sides of an acute triangle for
each i ≥ 2, we have that a2i+1 ≥ a2i + a2i−1; writing this out gives

a23 ≥ a22 + a21 ≥ 2a21

a24 ≥ a23 + a22 ≥ 2a21 + a21 = 3a21

a25 ≥ a24 + a23 ≥ 3a21 + 2a21 = 5a21

a26 ≥ a25 + a24 ≥ 5a21 + 3a21 = 8a21

and so on. The Fibonacci numbers appear naturally and by induction, we conclude that
a2i ≥ Fia21. In particular, a2n ≥ Fna21.

However, we know max(a1, . . . , an) = an and min(a1, . . . , an) = a1, so (†) reads
an ≤ n · a1. Therefore we have Fn ≤ n2, and so n ≤ 12, contradiction!

Proof that no n ≤ 12 have the property. Assume that n ≤ 12. The above
calculation also suggests a way to pick the counterexample: we choose ai =

√
Fi for every

i. Then min(a1, . . . , an) = a1 = 1 and max(a1, . . . , an) =
√
Fn, so (†) is true as long as

n ≤ 12. And indeed no three numbers form the sides of an acute triangle: if i < j < k,
then a2k = Fk = Fk−1 + Fk−2 ≥ Fj + Fi = a2j + a2i .
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§2 USAMO 2012/2, proposed by Gregory Galperin

A circle is divided into congruent arcs by 432 points. The points are colored in four colors such

that some 108 points are colored red, some 108 points are colored green, some 108 points are

colored blue, and the remaining 108 points are colored yellow. Prove that one can choose three

points of each color in such a way that the four triangles formed by the chosen points of the same

color are congruent.

First, consider the 431 possible non-identity rotations of the red points, and count
overlaps with green points. If we select a rotation randomly, then each red point lies over
a green point with probability 108

431 ; hence the expected number of red-green incidences is

108

431
· 108 > 27

and so by pigeonhole, we can find a red 28-gon and a green 28-gon which are rotations of
each other.

Now, look at the 430 rotations of this 28-gon (that do not give the all-red or all-green
configuration) and compare it with the blue points. The same approach gives

108

430
· 28 > 7

incidences, so we can find red, green, blue 8-gons which are similar under rotation.
Finally, the 429 nontrivial rotations of this 8-gon expect

108

429
· 8 > 2

incidences with yellow. So finally we have four monochromatic 3-gons, one of each color,
which are rotations of each other.
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§3 USAMO 2012/3, proposed by Gabriel Carroll

Determine which integers n > 1 have the property that there exists an infinite sequence a1, a2,
a3, . . . of nonzero integers such that the equality

ak + 2a2k + · · ·+ nank = 0

holds for every positive integer k.

Answer: all n > 2.
For n = 2, we have ak + 2a2k = 0, which is clearly not possible, since it implies

a2k = a1
2k−1 for all k ≥ 1.

For n ≥ 3 we will construct a completely multiplicative sequence (meaning aij = aiaj
for all i and j). Thus (ai) is determined by its value on primes, and satisfies the condition
as long as a1 + 2a2 + · · ·+nan = 0. The idea is to take two large primes and use Bezout’s
theorem, but the details require significant care.

We start by solving the case where n ≥ 9. In that case, by Bertrand postulate there
exists primes p and q such that

dn/2e < q < 2 dn/2e and
1

2
(q − 1) < p < q − 1.

Clearly p 6= q, and q ≥ 7, so p > 3. Also, p < q < n but 2q > n, and 4p ≥ 4
(
1
2(q + 1)

)
> n.

We now stipulate that ar = 1 for any prime r 6= p, q (in particular including r = 2 and
r = 3). There are now three cases, identical in substance.

• If p, 2p, 3p ∈ [1, n] then we would like to choose nonzero ap and aq such that

6p · ap + q · aq = 6p+ q − 1

2
n(n+ 1)

which is possible by Bézout lemma, since gcd(6p, q) = 1.

• Else if p, 2p ∈ [1, n] then we would like to choose nonzero ap and aq such that

3p · ap + q · aq = 3p+ q − 1

2
n(n+ 1)

which is possible by Bézout lemma, since gcd(3p, q) = 1.

• Else if p ∈ [1, n] then we would like to choose nonzero ap and aq such that

p · ap + q · aq = p+ q − 1

2
n(n+ 1)

which is possible by Bézout lemma, since gcd(p, q) = 1. (This case is actually
possible in a few edge cases, for example when n = 9, q = 7, p = 5.)

It remains to resolve the cases where 3 ≤ n ≤ 8. We enumerate these cases manually:

• For n = 3, let an = (−1)ν3(n).

• For n = 4, let an = (−1)ν2(n)+ν3(n).

• For n = 5, let an = (−2)ν5(n).

• For n = 6, let an = 5ν2(n) · 3ν3(n) · (−42)ν5(n).

• For n = 7, let an = (−3)ν7(n).

• For n = 8, we can choose (p, q) = (5, 7) in the prior construction.

This completes the constructions for all n > 2.
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§4 USAMO 2012/4, proposed by Gabriel Dospinescu

Find all functions f : Z+ → Z+ such that f(n!) = f(n)! for all positive integers n and such that

m− n divides f(m)− f(n) for all distinct positive integers m,n.

By putting n = 1 and n = 2 we give f(1), f(2) ∈ {1, 2}. Also, we will use the condition

m!− n! divides f(m)!− f(n)!.

We consider four cases on f(1) and f(2), and dispense with three of them.

• If f(2) = 1 then for all m ≥ 3 we have m!− 2 divides f(m)!− 1, so f(m) = 1 for
modulo 2 reasons. Then clearly f(1) = 1.

• If f(1) = f(2) = 2 we first obtain 3!− 1 | f(3)!− 2, which implies f(3) = 2. Then
m!− 3 | f(m)!− 2 for m ≥ 4 implies f(m) = 2 for modulo 3 reasons.

Hence we are left with the case where f(1) = 1 and f(2) = 2. Continuing, we have

3!− 1 | f(3)!− 1 and 3!− 2 | f(3)!− 2 =⇒ f(3) = 3.

Continuing by induction, suppose f(1) = 1, . . . , f(k) = k.

k! · k = (k + 1)!− k! | f(k + 1)!− k!

and thus we deduce that f(k + 1) ≥ k, and hence

k | f(k + 1)!

k!
− 1.

Then plainly f(k + 1) ≤ 2k for mod k reasons, but also f(k + 1) ≡ 1 (mod k) so we
conclude f(k) = k + 1.

Remark. Shankar Padmanabhan gives the following way to finish after verifying that
f(3) = 3. Note that if

M = ((((3!)!)!)! . . . )!

for any number of iterated factorials then f(M) = M . Thus for any n, we have

M − n | f(M)− f(n) = M − f(n) =⇒ M − n | n− f(n)

and so taking M large enough implies f(n) = n.
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§5 USAMO 2012/5, proposed by Titu Andreescu and Cosmin
Pohoata

Let P be a point in the plane of 4ABC, and γ a line through P . Let A′, B′, C ′ be the

points where the reflections of lines PA,PB,PC with respect to γ intersect lines BC, CA, AB

respectively. Prove that A′, B′, C ′ are collinear.

We present two solutions.

First solution (complex numbers) Let p = 0 and set γ as the real line. Then A′ is the
intersection of bc and pa. So, we get

a′ =
a(bc− bc)

(b− c)a− (b− c)a
.

A

B C

P

A′

Note that

a′ =
a(bc− bc)

(b− c)a− (b− c)a
.

Thus it suffices to prove

0 =

∣∣∣∣∣∣∣∣∣
a(bc−bc)

(b−c)a−(b−c)a
a(bc−bc)

(b−c)a−(b−c)a 1

b(ca−ca)
(c−a)b−(c−a)b

b(ca−ca)
(c−a)b−(c−a)b 1

c(ab−ab)
(a−b)c−(a−b)c

c(ab−ab)
(a−b)c−(a−b)c 1

∣∣∣∣∣∣∣∣∣ .
This is equivalent to

0 =

∣∣∣∣∣∣
a(bc− bc) a(bc− bc) (b− c)a− (b− c)a
b(ca− ca) b(ca− ca) (c− a)b− (c− a)b

c(ab− ab) c(ab− ab) (a− b)c− (a− b)c

∣∣∣∣∣∣ .
Evaluating the determinant gives∑

cyc

((b− c)a− (b− c)a) · −
∣∣∣∣ b b
c c

∣∣∣∣ · (ca− ca)
(
ab− ab

)
or, noting the determinant is bc− bc and factoring it out,

(bc− cb)(ca− ca)(ab− ab)
∑
cyc

(
ab− ac+ ca− ba

)
= 0.

Second solution (Desargues involution) We let C ′′ = A′B′ ∩AB. Consider complete
quadrilateral ABCA′B′C ′′C. We see that there is an involutive pairing τ at P swapping
(PA,PA′), (PB,PB′), (PC,PC ′′). From the first two, we see τ coincides with reflection
about `, hence conclude C ′′ = C.

7
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USAMO 2012 Solution Notes web.evanchen.cc, updated April 17, 2020

§6 USAMO 2012/6, proposed by Gabriel Carroll

For integer n ≥ 2, let x1, x2, . . . , xn be real numbers satisfying

x1 + x2 + · · ·+ xn = 0 and x21 + x22 + · · ·+ x2n = 1.

For each subset A ⊆ {1, 2, . . . , n}, define SA =
∑

i∈A xi. (If A is the empty set, then SA = 0.)

Prove that for any positive number λ, the number of sets A satisfying SA ≥ λ is at most 2n−3/λ2.

For which choices of x1, x2, . . . , xn, λ does equality hold?

Let εi be a coin flip of 0 or 1. Then we have

E[S2
A] = E

[(∑
εixi

)2]
=
∑
i

E[ε2i ]x
2
i +

∑
i<j

E[εiεj ]2xixj

=
1

2

∑
x2i +

1

2

∑
xixj =

1

2
+

1

2

∑
i<j

xixj =
1

2
+

1

2

(
−1

2

)
=

1

4
.

In other words,
∑

A S
2
A = 2n−2. Since can always pair A with its complement, we

conclude ∑
SA>0

S2
A = 2n−3.

Equality holds iff SA ∈ {±λ, 0} for every A. This occurs when x1 = 1/
√

2, x2 = −1/
√

2,
x3 = · · · = 0 (or permutations), and λ = 1/

√
2.
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42nd United States of America Mathematical Olympiad

Day I 12:30 PM – 5 PM EDT

April 30, 2013

Note: For any geometry problem, the first page of the solution must be a large, in-scale,
clearly labeled diagram made with drawing instruments (ruler, compass, protractor, graph pa-
per). Failure to meet any of these requirements will result in a 1-point automatic deduction.

USAMO 1. In triangle ABC, points P, Q, R lie on sides BC, CA,AB, respectively. Let ωA, ωB, ωC

denote the circumcircles of triangles AQR, BRP,CPQ, respectively. Given the fact that
segment AP intersects ωA, ωB, ωC again at X, Y, Z respectively, prove that Y X/XZ =
BP/PC.

USAMO 2. For a positive integer n ≥ 3 plot n equally spaced points around a circle. Label one of them
A, and place a marker at A. One may move the marker forward in a clockwise direction
to either the next point or the point after that. Hence there are a total of 2n distinct
moves available; two from each point. Let an count the number the number of ways to
advance around the circle exactly twice, beginning and ending at A, without repeating a
move. Prove that an−1 + an = 2n for all n ≥ 4.

USAMO 3. Let n be a positive integer. There are n(n+1)
2

marks, each with a black side and a white side,
arranged into an equilateral triangle, with the biggest row containing n marks. Initially,
each mark has the black side up. An operation is to choose a line parallel to one of
the sides of the triangle, and flipping all the marks on that line. A configuration is called
admissible if it can be obtained from the initial configuration by performing a finite number
of operations. For each admissible configuration C, let f(C) denote the smallest number
of operations required to obtain C from the initial configuration. Find the maximum value
of f(C), where C varies over all admissible configurations.

Copyright © Mathematical Association of America

1



42nd United States of America Mathematical Olympiad

Day II 12:30 PM – 5 PM EDT

May 1, 2013

Note: For any geometry problem, the first page of the solution must be a large, in-scale,
clearly labeled diagram made with drawing instruments (ruler, compass, protractor, graph pa-
per). Failure to meet any of these requirements will result in a 1-point automatic deduction.

USAMO 4. Find all real numbers x, y, z ≥ 1 satisfying

min(
√

x + xyz,
√

y + xyz,
√

z + xyz) =
√

x− 1 +
√

y − 1 +
√

z − 1.

USAMO 5. Given positive integers m and n, prove that there is a positive integer c such that the
numbers cm and cn have the same number of occurrences of each non-zero digit when
written in base ten.

USAMO 6. Let ABC be a triangle. Find all points P on segment BC satisfying the following property:
If X and Y are the intersections of line PA with the common external tangent lines of the
circumcircles of triangles PAB and PAC, then

(
PA

XY

)2

+
PB · PC

AB · AC
= 1.

Copyright © Mathematical Association of America
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42nd United States of America Mathematical Olympiad

Day I, II 12:30 PM – 5 PM EDT

April 30 - May 1, 2013

USAMO 1. First Solution: Assume that ωB and ωC intersect again at another point S (other than
P ). (The degenerate case of ωB and ωC being tangent at P can be dealt similarly.) Because
BPSR and CPSQ are cyclic, we have ∠RSP = 180◦−∠PBR and ∠PSQ = 180◦−∠QCP .
Hence, we obtain

∠QSR = 360◦−∠RSP −∠PSQ = ∠PBR+∠QCP = ∠CBA+∠ACB = 180◦−∠BAC;

from which it follows that ARSQ is cyclic; that is, ωA, ωB, ωC meet at S. (This is Miquel’s
theorem.)

Because BPSY is inscribed in ωB, ∠XY S = ∠PY S = ∠PBS. Because ARXS is in-
scribed in ωA, ∠SXY = ∠SXA = ∠SRA. Because BPSR is inscribed in ωB, ∠SRA =
∠SPB. Thus, we have ∠SXY = ∠SRA = ∠SPB. In triangles SY X and SBP , we have
∠XY S = ∠PBS and ∠SXY = ∠SPB. Therefore, triangles SY X and SBP are similar
to each other, and, in particular,

Y X

BP
=

SX

SP
.

Similar, we can show that triangles SXZ and SPC are similar to each other and that

SX

SP
=

XZ

PC
.

Combining the last two equations yields the desired result.

A

B C

P

Q
R

X

Y

Z

S

This problem and solution were suggested by Zuming Feng.

Second Solution: Assume that ωB and ωC intersect again at another point S (other
than P ). (The degenerate case of ωB and ωC being tangent at P can be dealt with
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similarly.) Because BPSR and CPSQ are cyclic, we have ∠RSP = 180◦ − ∠PBR and
∠PSQ = 180◦ − ∠QCP . Hence, we obtain

∠QSR = 360◦−∠RSP −∠PSQ = ∠PBR+∠QCP = ∠CBA+∠ACB = 180◦−∠BAC;

from which it follows that ARSQ is cyclic; that is, ωA, ωB, ωC meet at S. (This is Miquel’s
theorem.)

Because BPSY is inscribed in ωB, ∠XY S = ∠PY S = ∠PBS. Because ARXS is in-
scribed in ωA, ∠SXY = ∠SXA = ∠SRA. Because BPSR is inscribed in ωB, ∠SRA =
∠SPB. Thus, we have ∠SXY = ∠SRA = ∠SPB. In triangles SY X and SBP , we have
∠XY S = ∠PBS and ∠SXY = ∠SPB. Therefore, triangles SY X and SBP are similar
to each other, and, in particular,

Y X

BP
=

SX

SP
.

Similar, we can show that triangles SXZ and SPC are similar to each other and that

SX

SP
=

XZ

PC
.

Combining the last two equations yields the desired result.

A

B C

P

Q
R

X

Y

Z

S

We consider the configuration shown in the above diagram. (We can adjust the proof
below easily for other configurations. In particular, our proof is carried with directed
angles modulo 180◦.)

Line RY intersects ωA again at TY (other than R). Because BPY R is cyclic, ∠TY Y X =
∠TY Y P = ∠RBP = ∠ABP . Because ARXTY is cyclic, ∠XTY Y = ∠XAR = ∠PAB.
Hence triangles TY Y X and ABP are similar to each other. In particular,

∠Y XTY = ∠BPA and
Y X

BP
=

XTY

PA
. (1)

Likewise, if line QZ intersect ωA again at TZ (other than R), we can show that triangles
TZZX and ACP are similar to each other and that

∠TZXZ = ∠APC and
XTZ

PA
=

XZ

PC
. (2)

2



In the light of the second equations (on lengths proportions) in (1) and (2), it suffices to
show that TZ = TY . On the other hand, the first equations (on angles) in (1) and (2)
imply that X,TY , TZ lie on a line. But this line can only intersect ωA twice with X being
one of them. Hence we must have TY = TZ , completing our proof.

Comment: The result remains to be true if segment AP is replaced by line AP . The
current statement is given to simplify the configuration issue. Also, a very common mistake
in attempts following the second solution is assuming line RY and QZ meet at a point on
ωA.

This solution was suggested by Zuming Feng.

USAMO 2. First Solution. We will show that an = 1
3
(2n+1 + (−1)n). This would be sufficient, since

then we would have

an−1 + an = 1
3
(2n + (−1)n−1) + 1

3
(2n+1 + (−1)n) = 1

3
(2n + 2 · 2n) = 2n.

We will need the fact that for all positive integers n

bn/2c∑
k=0

(
n− k

k

)
2k = 1

3
(2n+1 + (−1)n).

This may be established by strong induction. To begin, the cases n = 1 and n = 2 are
quickly verified. Now suppose that n ≥ 3 is odd, say n = 2m + 1. We find that

m∑
k=0

(
2m + 1− k

k

)
2k = 1 +

m∑
k=1

(
2m− k

k

)
2k +

m∑
k=1

(
2m− k

k − 1

)
2k

=
m∑
k=0

(
2m− k

k

)
2k + 2

m−1∑
k=0

(
2m− 1− k

k

)
2k

= 1
3
(22m+1 + 1) + 2

3
(22m − 1)

= 1
3
(22m+2 − 1),

using the induction hypothesis for n = 2m and n = 2m− 1. For even n the computation
is similar, so we omit the steps. This proves the claim.

We now determine the number of ways to advance around the circle twice, organizing our
count according to the points visited both times around the circle. It is straight-forward to
check that no two such points may be adjacent, and that there are exactly two sequences
of moves leading from any such point to the next. (These sequences involve only moves
of length two except possibly at the endpoints.) Hence given k ≥ 1 points around the
circle, no two adjacent and not including point A, there would appear to be 2k ways to
traverse the circle twice without repeating a move. However, half of these options lead to
repeating the same route twice, giving 2k−1 ways in actuality. There are

(
n−k
k

)
ways to

select k nonadjacent points on the circle not including A (add an extra point behind each
of k chosen points), for a total contribution of

bn/2c∑
k=1

(
n− k

k

)
2k−1 =

1

2

[
−1 +

bn/2c∑
k=0

(
n− k

k

)
2k

]
= 1

6
(2n+1 + (−1)n)− 1

2
.
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On the other hand, if the k ≥ 1 nonadjacent points do include point A then there are(
n−k−1
k−1

)
ways to choose them around the circle. (Select A but not the next point, then add

an extra point after each of k − 1 selected points.) But now there are actually 2k ways to
circle twice, since we can choose either move at A and the subsequent points, then select
the other options the second time around. Hence the contribution in this case is

bn/2c∑
k=1

(
n− k − 1

k − 1

)
2k = 2

b(n−2)/2c∑
k=0

(
n− 2− k

k

)
2k = 2

3
(2n−1 + (−1)n).

Finally, if n is odd then there is one additional way to circle in which no point is visited
twice by using only steps of length two, giving a contribution of 1

2
(1− (−1)n). Therefore

the total number of paths is

1
6
(2n+1 + (−1)n)− 1

2
+ 2

3
(2n−1 + (−1)n) + 1

2
(1− (−1)n),

which simplifies to 1
3
(2n+1 + (−1)n), as desired.

This problem and solution were suggested by Sam Vandervelde.

Second Solution: We give a bijective proof of the identity

an = an−1 + 2an−2,

which immediately implies that an + an−1 = 2(an−1 + an−2). Since trivially a0 = a1 = 1
(or alternatively a1 = 1, a2 = 3), the desired identity will then follow by induction on n.

To construct the bijection, it is convenient to introduce some alternate representations
for the sequences we are counting. Label the points P0, . . . , Pn−1 in order, and define
Pi+n = Pi. One can then represent the sequences to be counted by listing the sequence of
vertices Pi0Pi1 . . . Pim visited by the marker, with the conventions that i0 = 0, im = 2n,
and ij+1 − ij ∈ {1, 2} for j = 0, . . . ,m − 1. One can represent such sequences of vertices
in turn by 2× (n + 1) matrices A by setting

Aij =

{
1 Pni+j is visited

0 Pni+j is not visited
(i = 0, 1; j = 0, . . . , n).

Such a matrix A corresponds to a valid sequence if and only if A00 = A1n = 1 (so the
sequence of steps starts and ends at P0), A0n = An0 (so the sequence of steps is well-defined
at Pn), and there are no submatrices of any of the forms(

0 0
)
,

(
0
0

)
,

(
1 1
1 1

)
(to exclude steps of length greater than 2, duplication of a length 2 step, and duplication
of a length 1 step). For example, the valid sequences for n = 3 are represented by the
matrices(

1 0 1 0
0 1 0 1

)
,

(
1 0 1 0
0 1 1 1

)
,

(
1 1 0 1
1 0 1 1

)
,

(
1 1 1 0
0 1 0 1

)
,

(
1 0 1 1
1 1 0 1

)
.
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Let Sn be the set of valid 2×(n+1) matrices. The correspondence Sn−2tSn−2tSn−1 ∼= Sn

can then be described by replacing the right end of the matrix in the following fashion,
where · · · represents any row of length n− 2.(

· · · 1
· · · 1

) (
· · · 1 1 1
· · · 1 0 1

)
,

(
· · · 1 0 1
· · · 1 1 1

)
(
· · · 0
· · · 1

) (
· · · 0 1 0
· · · 1 0 1

)
,

(
· · · 0 1 0
· · · 1 1 1

)
(
· · · 0 1
· · · 1 1

) (
0 1 1
1 0 1

)
(
· · · 1 1
· · · 0 1

) (
1 0 1
0 1 1

)
(
· · · 1 0
· · · 1 1

) (
1 1 0
1 0 1

)
(
· · · 1 0
· · · 0 1

) (
1 1 0
0 1 1

)
From this description, it is easy to see that passing from one side to the other preserves
the boundary condition and the excluded submatrix conditions (because every submatrix
whose entries are not all shown remains unchanged). We thus have the claimed bijection.

This solution was suggested by Kiran Kedlaya.

Third Solution: This solution uses some of the same notation as the second solution.

We first solve a related but simpler counting problem. Let Sn be the set of sequences of
steps of lengths 1 or 2 of total length n. For each sequence s ∈ Sn, let b(s) be the number
of steps of length 2 in s and define fn =

∑
s∈Sn

2b(s). It is clear that f0 = f1 = 1. For
n ≥ 2, we also have

fn = fn−1 + 2fn−2

by counting sequences of length n according to whether they end in a step of length 1 or
2. Thus

fn + fn−1 = 2(fn−1 + fn−2),

from which it follows by induction on n that fn + fn−1 = 2n for n ≥ 1. By induction on
n, we also have

fn =
2n + (−1)n

3
.

We now write an in terms of fn. Label the points of the circle as in the previous solution.
We may separate sequences of moves into three types.

1. Sequences that visit Pn but not Pn−1. Such a sequence starts with some s ∈ Sn−2
followed by a step of length 2. The number of complements for s (i.e., the number of
ways to complete it to a full sequence) can be seen to be 2b(s) as follows. If we decide
in order whether to skip each of Pn+1, . . . , P2n, then the choice for Pn+i is uniquely
forced if A0(i−1) = 1 and unrestricted if A0(i−1) = 0. In the notation of the previous
solution, we may see this by noting that(

A0(i−1) A0i

A1(i−1) A1i

)
∈
{(

1 1
0 1

)
,

(
1 1
1 0

)
,

(
1 0
0 1

)
,

(
1 0
1 1

)
,

(
0 1
1 0

)
,

(
0 1
1 1

)}
.
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(This logic does not apply to P2n: we have A0(n−1) = 0 but must take A1(2n) = 1.)
We thus get fn−2 sequences of this type.

2. Sequences that visit Pn−1 but not Pn. Such a sequence starts with some s ∈ Sn−1
followed by a step of length 2. There are fn−1 sequences of this type.

3. Sequences that visit both Pn−1 and Pn. Such a sequence starts with some s ∈ Sn−1
followed by a step of length 1. Here the count is complicated by the constraint that
we must skip P2n−1, so the final step of length 2 does not create an option. Therefore,
s contributes 2b(s)−1 complements if b(s) > 0. The only case where b(s) = 0 is when
s consists of only steps of length 1, in which case we get 1 complement if n is even
and 0 complements if n is odd.

Putting this together, we get

an = fn−2 + fn−1 +
1

2
(fn−1 + (−1)n)

=
2n−2 + (−1)n−2

3
+

2n−1 + (−1)n−1

3
+

2n−1 + (−1)n−1

6
+

(−1)n

2

=
2n + (−1)n

3

and so an−1 + an = 2n as desired.

Remark. The sequence an is known as the Jacobsthal sequence and has many other
combinatorial interpretations. See sequence A001045 in the Online Encyclopedia of Integer
Sequences: http://oeis.org.

This solution was suggested by Kiran Kedlaya.

USAMO 3. For n = 1 the answer is clearly 1, since there is only one configuration other than the
initial one, and that configuration takes 1 step to get to. From now on we will consider
n ≥ 2.

Note that there are 3n possible operations in total, since we can select 3n lines to perform
an operation on (n lines parallel to each side of the triangle.) Performing an operation twice
on the same line is equivalent to doing nothing. Hence, we will describe any combination
of operations as a triple of n-tuples ((a1, a2, . . . , an), (b1, b2, . . . , bn), (c1, c2, . . . , cn)), where
each element ai, bi, ci is either 0 or 1 (0 means no operation, 1 means the opposite), each
tuple of the triple denotes operating on a line parallel to one of the sides, and the indices,
i.e. 1, 2, . . . , n, denote the number of marks in the row of operation. Let A denote the set
of all such 3n-tuples. Hence |A| = 23n.

Let B denote the set of all admissible configurations. Let N =
n(n + 1)

2
. We will describe

each element of B by an N -tuple (z1, z2, . . . , zN), where each element is either 0 or 1 (0
means black, 1 means white). (Which element refers to which position is not important.)

For each element a ∈ A, let b = f(a) be the element of B that is the result of applying
the operations in a. Then f(a + a′) = f(a) + f(a′) for all a, a′ ∈ A, where addition is
considered in modulo 2. Let K be the set of all a ∈ A such that f(a) is the all-black
configuration. The following eight elements are easily seen to be in K.

6



• ((0, 0, . . . , 0), (0, 0, . . . , 0), (0, 0, . . . , 0)) = id

• ((0, 0, . . . , 0), (1, 1, . . . , 1), (1, 1, . . . , 1)) = x

• ((1, 1, . . . , 1), (1, 1, . . . , 1), (0, 0, . . . , 0)) = y

• ((1, 1, . . . , 1), (0, 0, . . . , 0), (1, 1, . . . , 1)) = x + y

• ((0, 1, 0, 1, . . . ), (0, 1, 0, 1, . . . ), (0, 1, 0, 1, . . . )) = z

• ((0, 1, 0, 1, . . . ), (1, 0, 1, 0, . . . ), (1, 0, 1, 0, . . . )) = x + z

• ((1, 0, 1, 0, . . . ), (1, 0, 1, 0, . . . ), (0, 1, 0, 1, . . . )) = y + z

• ((1, 0, 1, 0, . . . ), (0, 1, 0, 1, . . . ), (1, 0, 1, 0, . . . )) = x + y + z

We will show that they are the only elements of K.

Suppose L = ((a1, a2, . . . , an), (b1, b2, . . . , bn), (c1, c2, . . . , cn)) is in K. Then ai + bj + ck = 0
whenever i + j + k = 2n + 1 (why this is is left as an exercise for the reader.) By
adding x and/or y if necessary, we will assume that bn = cn = 0. Since a2 + bn−1 + cn =
a2 + bn + cn−1 = 0, we have that bn−1 = cn−1. There are two cases:

(a) bn−1 = cn−1 = 0. Then from a3 + bn−2 + cn = a3 + bn−1 + cn−1 = a3 + bn + cn−2, we
have that bn−2 = cn−2 = 0. Continuing in this manner (considering equalities with
a4, a5, . . .), we find that all the bi’s and ci’s are 0, from which we deduce that L = id.

(b) bn−1 = cn−1 = 1. Then from a3 + bn−2 + cn = a3 + bn−1 + cn−1 = a3 + bn + cn−2, we
have that bn−2 = cn−2 = 0. Continuing in this manner (considering equalities with
a4, a5, . . .), we find that (b1, b2, . . . , bn) = (c1, c2, . . . , cn) = (. . . , 1, 0, 1, 0), from which
we deduce that either L = z or L = x + z.

Hence L is one of the eight elements listed above. It follows that the 23n elements of A
form 23n−3 sets, each set corresponding to an element of B. For each element a ∈ A, let
x1 be the number of a1, a3, . . . that are 1, and let x2 be the number of a2, a4, . . . that are
1. Define y1, y2, z1, and z2 similarly with the bi’s and ci’s. We want to find the element in
the set containing a that has the smallest value of T = x1 + x2 + y1 + y2 + z1 + z2. The
maximum of this value over all the sets is the desired answer.

We observe that an element a ∈ A has the minimal value of T in its set if and only if it
satisfies the following inequalities:

(a) x1 + x2 + y1 + y2 ≤ n

(b) x1 + x2 + z1 + z2 ≤ n

(c) y1 + y2 + z1 + z2 ≤ n

(d) x2 + y2 + z2 ≤
⌊

3bn/2c
2

⌋
= V

(e) x1 + y1 + z2 ≤
⌊

2dn/2e+ bn/2c
2

⌋
= W

(f) x2 + y1 + z1 ≤
⌊

2dn/2e+ bn/2c
2

⌋
= W
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(g) x1 + y2 + z1 ≤
⌊

2dn/2e+ bn/2c
2

⌋
= W

We wish to find the maximal value of T that an element satisfying all these inequalities

can have. Adding the last four inequalities and dividing by 4, we obtain T ≤
⌊
V + 3W

2

⌋
.

We consider four cases:

(a) n = 4k. V = W = 3k, and so T ≤ 6k. We can choose x1 = x2 = y1 = y2 = z1 = z2 =
k to attain the bound.

(b) n = 4k + 1. V = 3k and W = 3k + 1, and so T ≤ 6k + 1. We can choose
x1 = x2 = y1 = y2 = z2 = k and z1 = k + 1 to attain the bound.

(c) n = 4k + 2. V = 3k + 1 and W = 3k + 1, and so T ≤ 6k + 2. We can choose
x1 = x2 = y1 = y2 = k and z1 = z2 = k + 1 to attain the bound.

(d) n = 4k + 3. V = 3k + 1 and W = 3k + 2, and so T ≤ 6k + 3. We can choose
x1 = x2 = y2 = k and y1 = z1 = z2 = k + 1 to attain the bound.

This concludes our proof.

This problem and solution were suggested by Warut Suksompong.

USAMO 4. First Solution: Let a, b, c be nonnegative real numbers such that x = 1 + a2, y = 1 + b2

and z = 1+c2. We may assume that c ≤ a, b, so that the condition of the problem becomes

(1 + c2)(1 + (1 + a2)(1 + b2)) = (a + b + c)2.

The Cauchy-Schwarz inequality yields

(a + b + c)2 ≤ (1 + (a + b)2)(c2 + 1).

Combined with the previous relation, this shows that

(1 + a2)(1 + b2) ≤ (a + b)2,

which can also be written (ab− 1)2 ≤ 0. Hence ab = 1 and the Cauchy-Schwarz inequality
must be an equality, that is, c(a+ b) = 1. Conversely, if ab = 1 and c(a+ b) = 1, then the
relation in the statement of the problem holds, since c = 1

a+b
< 1

b
= a and similarly c < b.

Thus the solutions of the problem are

x = 1 + a2, y = 1 +
1

a2
, z = 1 +

(
a

a2 + 1

)2

for some a > 0, as well as permutations of this. (Note that we can actually assume a ≥ 1
by switching x and y if necessary.)

This problem and solution were suggested by Titu Andreescu.
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Second Solution: We maintain the notations in the first solution and again consider the
equation

(a + b + c)2 = 1 + c2 + (1 + a2)(1 + b2)(1 + c2).

Expanding both sides of the equation yields

a2 + b2 + c2 + 2ab + 2bc + 2ca = 1 + c2 + 1 + a2 + b2 + c2 + a2b2 + b2c2 + c2a2 + a2b2c2

or
a2b2c2 + a2b2 + b2c2 + c2a2 − 2ab− 2bc− 2ca + c2 + 2 = 2(ab + bc + ca).

Setting (u, v, w) = (ab, bc, ca), we can write the above equation as

uvw + u2 + v2 + w2 − 2u− 2v − 2w +
vw

u
+ 2 = 2(u + v + w).

which is the equality case of the sum of the following three special cases of the AM-GM
inequality:

uvw +
vw

u
≥ 2vw, v2 + w2 + 2vw + 1 = 2(v + w) ≥ 0, u2 + 1 ≥ 2u.

Hence we must have the equality cases these AM-GM inequalities; that is, ab = u = 1 and
a(b + c) = v + w = 1. We can then complete our solution as we did in the first solution.

This solution was suggested by Zuming Feng.

USAMO 5. First Solution: For a given positive integer k, write 10km−n = 2r5st, where gcd(t, 10) =
1. For large enough values of k the number of times 2 and 5 divide the left-hand side is
at most the number of times they divide n, hence by choosing k large we can make t
arbitrarily large. Choose k so that t is larger than either m or n.

Since t is relatively prime to 10 there is a smallest exponent b for which t | (10b − 1).
Thus b is the number of digits in the repeating portion of the decimal expansion for 1

t
.

More precisely, if we write tc = (10b − 1), then the repeating block is the b-digit decimal
representation of c, obtained by prepending extra initial zeros to c as necessary. Since t
is larger than m or n, the decimal expansions of m

t
and n

t
will consist of repeated b-digit

representations of cm and cn, respectively. Rewriting the identity in the first line as

10k
(m
t

)
= 2r5s +

n

t
,

we see that the decimal expansion of n
t

is obtained from that of m
t

by shifting the decimal
to the right k places and removing the integer part. Thus the b-digit representations of
cm and cn are cyclic shifts of one another. In particular, they have the same number of
occurrences of each nonzero digit. (Because they may have different numbers of leading
zeros as b-digit numbers, the number of zeros in their decimal expansions may differ.)

This problem and solution were suggested by Richard Stong.

Second Solution: Suppose without loss of generality that m ≥ n. Note that if the
desired conclusion holds for the pair (km, kn) for some k, then it also holds for (m,n).
Write n = 2a5bl for some l relatively prime to 10, and note that it suffices to show the

9



desired statement for the pair (2b5am, 2b5an) = (2b5am, 10a+bl). Further, because 10a+bl
ends with a string of a+ b trailing 0’s it suffices to show the desired for the pair (2b5am, l),
where gcd(l, 10) = 1. Thus, from now on we assume that gcd(n, 10) = 1.

For such a pair (m,n), we see that gcd(10m−n, 10) = 1, so we may find some k and some
c so that c(10m − n) = 10k − 1, which implies that 10cm = (10k − 1) + cn. We observe
that cn ≡ 1 (mod 10), hence cn = 10y + 1 for some y which satisfies 10y < cn < 10k.
Substituting in, we find that

10cm = 10k − 1 + cn = 10k + 10y,

which implies that the non-zero digits of cm are exactly those of y with an additional 1.
But the non-zero digits of cn are those of y with an additional 1, so the non-zero digits of
cn and cm coincide, as needed.

This solution was suggested by Xiaodong Zhou.

USAMO 6. We consider the left-hand side configuration shown below. Let OB and ωB (OC and ωC)
denote the circumcenter and circumcircle of triangle ABP (ACP ) respectively. Line ST ,
with S on ωB and T on ωC , is one of the common tangent lines of the two circumcircles.
Point X lies on segment ST . Point Y lies on the other common tangent line.

A

B

C
P

OB

OC

S

T

X

Y

M OB

OC

A

B C
P

M

We will start with the following simple and well known geometry facts.

Let M be the intersection of segments XY and OBOC . By symmetry, M is the midpoint
of both segments AP and XY , and line OBOC is the perpendicular bisector of segments
XY and AP . By the power-of-a-point theorem,

XS2 = XA ·XP = XT 2 and X is the midpoint of segment ST . (3)

Triangles ABC and AOBOC are similar to each other, which is the so called Salmon
theorem. Indeed, ∠ABC = ∠MOBA = ∠OCOBA, because each angle is equal to half of

the angular size of arc
︷︷
AP of ωB. Likewise, ∠OBOCA = ∠C. In particular, we have

AB

AOB

=
BC

OBOC

=
CA

OCA
(4)
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Set AB = c, BC = a, and CA = b. We will establish the following key fact in two
approaches.

1−
(
PA

XY

)2

=
BC2

(AB + AC)2
=

a2

(b + c)2
. (5)

With this fact, the given condition in the problem becomes

PB · PC

AB · AC
=

a2

(b + c)2
or PB · PC =

a2bc

(b + c)2
. (6)

There are precisely two points P1 and P2 (on segment BC) satisfying (6): AP1 is the
bisector of ∠BAC and P2 is the reflection of P1 across the midpoint of segment BC.
Indeed, by the angle-bisector theorem, P2C = P1B = ac

b+c
and P2B = P1C = ab

b+c
, from

which (6) follows.

In order to settle the question, it remains to show that we can’t have more than two points
satisfying (6). We just write (6) as

a2bc

(b + c)2
= PB · PC = PB · (a− PB).

This a quadratic equation in PB, which can have at most two solutions.

Solution 1. Rays OBX and OCT meet in W . Because of (3) and OBS ‖ OCT , triangles
OBSX and WTX are congruent to each other. Hence OBX = XW and triangles OBXOC

and WXOC have the same area. Note that XM and XT are altitudes in triangles OBXOC

and WXOC respectively. Hence

XY ·OBOC

4
=

XM ·OBOC

2
=

XT ·OCW

2
=

ST · (OCT + TW )

4
=

ST · (OCT + OBS)

4
.

By (4), we can write the above equation as

XY

ST
=

OCT + OBS

OBOC

=
OCA + OBA

OBOC

=
AB + AC

BC
or

XY 2

ST 2
=

(b + c)2

a2
. (7)

Note that OBSTOC is a right trapezoid. Let U be the foot of the perpendicular from OC

on OBS. We have

ST 2 = UO2
C = OBO

2
C −OSU

2 = OBO
2
C − (OBS −OCT )2 = OBO

2
C − (OBA−OCA)2.

By (4), we can write the above equation as

ST 2 =
OBO

2
C

BC2
(BC2−(BA−CA)2) =

OBO
2
C

BC2
(a2−(b−c)2) =

OBO
2
C

BC2
(a+b−c)(a−b+c). (8)

Multiplying (7) and (8) together gives

XY 2 =
OBO

2
C

BC2
· (a + b− c)(a− b + c)(b + c)2

a2
. (9)

11



Let ha denote length of the altitude from A to side BC in triangle ABC. Then ha and
AM are corresponding parts in similar triangles ABC and AOBOC , and so

OBO
2
C

BC2
=

AM2

h2
a

=
AM2

4h2
a

. (10)

Multiplying (9) and (10) together gives

XY 2 =
AP 2

4h2
a

· (a + b− c)(a− b + c)(b + c)2

a2

By Heron’s formula, we have

AP 2

XY 2
=

4h2
aa

2

(a + b− c)(a− b + c)(b + c)2
=

(a + b + c)(b + c− a)

(b + c)2
=

(b + c)2 − a2

(b + c)2
= 1− a2

(b + c)2
,

from which (5) follows.

X

S

T

OB OC

M

W

A

OB OC

S

T

X

M

U

S1
T1

Solution 2. By the power-of-a-point theorem, we have XA ·XP = XS2. Therefore,

1−
(
PA

XY

)2

=
XY 2 − PA2

XY 2
=

(XY + PA)(XY − PA)

XY 2
=

4XA ·XP

XY 2
=

4XS2

XY 2

ST 2

XY 2
.

(11)
Let S1 and T1 be the feet of the perpendiculars from S and T to line OBOC . It is easy to
see that right triangles OBSS1, OCTT1, OSOCU are similar to each other. Note also that
XM is the midline of right trapezoid S1STT1 (because of (3)). Therefore, we have

ST

OBOC

=
UOC

OBOC

=
S1S

OBS
=

T1T

OCT
=

S1S + T1T

OBS + OCT
=

2XM

OBS + OCT
=

XY

OBS + OCT
,

or, by (4),
ST

XY
=

OBOC

OBS + OCT
=

OBOC

OBA + OCA
=

BC

BA + CA
=

a

b + c
. (12)

It is clear that (5) follows from (11) and (12).

This problem and Solution 1 were suggested by Titu Andreescu and Cosmin Pohoata.
Solution 2 was suggested by Zuming Feng.

Copyright © Committee on the American Mathematics Competitions,
Mathematical Association of America
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§0 Problems

1. In triangle ABC, points P , Q, R lie on sides BC, CA, AB, respectively. Let ωA,
ωB, ωC denote the circumcircles of triangles AQR, BRP , CPQ, respectively. Given
the fact that segment AP intersects ωA, ωB, ωC again at X, Y , Z respectively,
prove that Y X/XZ = BP/PC.

2. For a positive integer n ≥ 3 plot n equally spaced points around a circle. Label
one of them A, and place a marker at A. One may move the marker forward in a
clockwise direction to either the next point or the point after that. Hence there
are a total of 2n distinct moves available; two from each point. Let an count the
number of ways to advance around the circle exactly twice, beginning and ending
at A, without repeating a move. Prove that an−1 + an = 2n for all n ≥ 4.

3. Let n be a positive integer. There are n(n+1)
2 tokens, each with a black side and a

white side, arranged into an equilateral triangle, with the biggest row containing
n tokens. Initially, each token has the white side up. An operation is to choose
a line parallel to the sides of the triangle, and flip all the token on that line. A
configuration is called admissible if it can be obtained from the initial configuration
by performing a finite number of operations. For each admissible configuration C,
let f(C) denote the smallest number of operations required to obtain C from the
initial configuration. Find the maximum value of f(C), where C varies over all
admissible configurations.

4. Find all real numbers x, y, z ≥ 1 satisfying

min
(√
x+ xyz,

√
y + xyz,

√
z + xyz

)
=
√
x− 1 +

√
y − 1 +

√
z − 1.

5. Let m and n be positive integers. Prove that there exists a positive integer c such
that cm and cn have the same nonzero decimal digits.

6. Let ABC be a triangle. Find all points P on segment BC satisfying the following
property: If X and Y are the intersections of line PA with the common external
tangent lines of the circumcircles of triangles PAB and PAC, then(

PA

XY

)2

+
PB · PC
AB ·AC

= 1.

2
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§1 USAMO 2013/1, proposed by Zuming Feng

In triangle ABC, points P , Q, R lie on sides BC, CA, AB, respectively. Let ωA, ωB , ωC denote

the circumcircles of triangles AQR, BRP , CPQ, respectively. Given the fact that segment AP

intersects ωA, ωB , ωC again at X, Y , Z respectively, prove that Y X/XZ = BP/PC.

Let M be the concurrence point of ωA, ωB, ωC (by Miquel’s theorem).

A

B CP

Q

R

M
X

Y

Z

Then M is the center of a spiral similarity sending Y Z to BC. So it suffices to show
that this spiral similarity also sends X to P , but

]MXY = ]MXA = ]MRA = ]MRB = ]MPB

so this follows.

3
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§2 USAMO 2013/2, proposed by Kiran Kedlaya

For a positive integer n ≥ 3 plot n equally spaced points around a circle. Label one of them A,

and place a marker at A. One may move the marker forward in a clockwise direction to either

the next point or the point after that. Hence there are a total of 2n distinct moves available; two

from each point. Let an count the number of ways to advance around the circle exactly twice,

beginning and ending at A, without repeating a move. Prove that an−1 + an = 2n for all n ≥ 4.

Imagine the counter is moving along the set S = {0, 1, . . . , 2n} instead, starting at 0
and ending at 2n, in jumps of length 1 and 2. We can then record the sequence of moves
as a matrix of the form [

p0 p1 p2 . . . pn−1 pn
pn pn+1 pn+2 . . . p2n−1 p2n

]
where pi = 1 if the point i was visited by the counter, and pi = 0 if the point was not
visited by the counter. Note that p0 = p2n = 1 and the upper-right and lower-left entries
are equal. Then, the problem amounts to finding the number of such matrices which
avoid the contiguous submatrices[

0 0
] [

0
0

] [
1 1
1 1

]
which correspond to forbidding jumps of length greater than 2, repeating a length 2 jump
and repeating a length 1 jump.

We will for now ignore the boundary conditions. Instead we say a 2 ×m matrix is
silver (m ≥ 2) if it avoids the three shapes above. We consider three types of silver
matrices (essentially doing casework on the last column):

• type B matrices, of the shape

[
1 · · · 1
0 · · · 0

]

• type C matrices, of the shape

[
1 · · · 0
0 · · · 1

]
.

• type D matrices, of the shape

[
1 · · · 1
0 · · · 1

]
.

We let bm, cm, dm denote matrices of each type, of size 2×m, and claim the following
two recursions for m ≥ 4:

bm = cm−1 + dm−1

cm = bm−1 + dm−1

dm = bm−1 + cm−1.

Indeed, if we delete the last column of a type B matrix and consider what used to be the
second-to-last column, we find that it is either type C or type D. This establishes the
first recursion and the others are analogous.

Note that b2 = 0 and c2 = d2 = 1. So using this recursion, the first few values are

m 2 3 4 5 6 7 8

bm 0 2 2 6 10 22 42
cm 1 1 3 5 11 21 43
dm 1 1 3 5 11 21 43

4
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and a calculation gives bm = 2m−1+2(−1)m−1

3 , cm = dm = 2m−1+(−1)m−1

3 .
We now relate an to bm, cm, dm. Observe that a matrix as described in the problem is

a silver matrix of one of two forms:[
1 p1 p2 . . . pn−1 0
0 pn+1 pn+2 . . . p2n−1 1

]
or

[
1 p1 p2 . . . pn−1 1
1 pn+1 pn+2 . . . p2n−1 1

]
.

There are cn+1 matrices of the first form. Moreover, there are 2dn matrices of the second
form (to see this, delete the first column; we either get a type-D matrix or an upside-down
type-D matrix). Thus we get

an = cn+1 + 2dn =
2n+1 + (−1)n+1

3
.

This easily implies the result.

5
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§3 USAMO 2013/3, proposed by Warut Suksompong

Let n be a positive integer. There are n(n+1)
2 tokens, each with a black side and a white side,

arranged into an equilateral triangle, with the biggest row containing n tokens. Initially, each

token has the white side up. An operation is to choose a line parallel to the sides of the triangle,

and flip all the token on that line. A configuration is called admissible if it can be obtained

from the initial configuration by performing a finite number of operations. For each admissible

configuration C, let f(C) denote the smallest number of operations required to obtain C from

the initial configuration. Find the maximum value of f(C), where C varies over all admissible

configurations.

The answer is

max
C

f(C) =


6k n = 4k

6k + 1 n = 4k + 1

6k + 2 n = 4k + 2

6k + 3 n = 4k + 3.

The main point of the problem is actually to determine all linear dependencies among
the 3n possible moves (since the moves commute and applying a move twice is the same
as doing nothing). In what follows, assume n > 1 for convenience.

To this end, we consider sequences of operations as additive vectors in v ∈ F3n
2 , with

the linear map T : F3n
2 → F

1
2
n(n+1)

2 denoting the result of applying a vector v. We in
particular focus on the following four vectors.

• Three vectors x, y, z are defined by choosing all n lines parallel to one axis. Note
T (x) = T (y) = T (z) = 1 (i.e. these vectors flip all tokens).

• The vector θ which toggles all lines with an even number of tokens. One can check
that T (θ) = 0. (Easiest to guess from n = 2 and n = 3 case.) One amusing proof
that this works is to use Vivani’s theorem: in an equilateral triangle ABC, the sum
of distances from an interior point P to the three sides is equal.

The main claim is:

Claim — For n ≥ 2, the kernel of T has exactly eight elements, namely {0, x +
y, y + z, z + x, θ, θ + x+ y, θ + y + z, θ + z + x}.

Proof. Suppose T (v) = 0.

• If v uses the y-move of length n, then we replace v with v + (x + y) to obtain a
vector in the kernel not using the y-move of length n.

• If v uses the z-move of length n, then we replace v with v + (x + z) to obtain a
vector in the kernel not using the z-move of length n.

• If v uses the x-move of length 2, then

– if n is odd, replace v with v + θ;

– if n is even, replace v with v + (θ + y + z)

to obtain a vector in the kernel not using the x-move of length 2.

A picture is shown below, with the unused rows being dotted.

6
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Then, it is easy to check inductively that v must now be the zero vector, after the
replacements. The idea is that for each token t, if two of the moves involving t are unused,
so is the third, and in this way we can show all rows are unused. Thus the original v was
in the kernel we described.

(An alternative proof by induction is feasible too; as a sequence of movings which does
not affect the top n rows also does not affect the to n− 1 rows.)

Then problem is a coordinate bash, since given any v we now know exactly which vectors
w have T (v) = T (w), so given any admissible configuration C one can exactly compute
f(C) as the minimum of eight values.

7
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§4 USAMO 2013/4, proposed by Titu Andreescu

Find all real numbers x, y, z ≥ 1 satisfying

min
(√
x+ xyz,

√
y + xyz,

√
z + xyz

)
=
√
x− 1 +

√
y − 1 +

√
z − 1.

Set x = 1 + a, y = 1 + b, z = 1 + c which eliminates the x, y, z ≥ 1 condition. Then
the given equation rewrites as√

(1 + a) (1 + (1 + b)(1 + c)) =
√
a+
√
b+
√
c.

In fact, we are going to prove the left-hand side always exceeds the right-hand side, and
then determine the equality cases. We have:

(1 + a) (1 + (1 + b)(1 + c)) = (a+ 1) (1 + (b+ 1)(1 + c))

≤ (a+ 1)

(
1 +

(√
b+
√
c
)2)

≤
(√

a+
(√

b+
√
c
))

by two applications of Cauchy-Schwarz.
Equality holds if bc = 1 and 1/a =

√
b +
√
c. Letting c = t2 for t ≥ 1, we recover

b = t−2 ≤ t2 and a = 1
t+1/t ≤ t

2.
Hence the solution set is

(x, y, z) =

(
1 +

(
t

t2 + 1

)2

, 1 +
1

t2
, 1 + t2

)

and permutations, for any t > 0.

8

http://web.evanchen.cc


USAMO 2013 Solution Notes web.evanchen.cc, updated May 2, 2020

§5 USAMO 2013/5, proposed by Richard Stong

Let m and n be positive integers. Prove that there exists a positive integer c such that cm and

cn have the same nonzero decimal digits.

One-line spoiler: 142857. More verbosely, the idea is to look at the decimal repre-
sentation of 1/D, m/D, n/D for a suitable denominator D, which have a “cyclic shift”
property in which the digits of n/D are the digits of m/D shifted by 3.

Remark (An example to follow along). Here is an example to follow along in the subsequent
proof If m = 4 and n = 23 then the magic numbers e = 3 and D = 41 obey

103 · 4

41
= 97 +

23

41
.

The idea is that

1

41
= 0.02439

4

41
= 0.09756

23

41
= 0.56097

and so c = 2349 works; we get 4c = 9756 and 23c = 56097 which are cyclic shifts of each
other by 3 places (with some leading zeros appended).

Here is the one to use:

Claim — There exists positive integers D and e such that gcd(D, 10) = 1, D >
max(m,n), and moreover

10em− n
D

∈ Z.

Proof. Suppose we pick some exponent e and define the number

A = 10en−m.

Let r = ν2(m) and s = ν5(m). As long as e > max(r, s) we have ν2(A) = r and ν5(A) = s,
too. Now choose any e > max(r, s) big enough that A > 2r5s max(m,n) also holds. Then
the number D = A

2r5s works; the first two properties hold by construction and

10e · n
D
− m

D
=
A

D
= 2r5s

is an integer.

Remark (For people who like obscure theorems). Kobayashi’s theorem implies we can
actually pick D to be prime.

Now we take c to be the number under the bar of 1/D (leading zeros removed). Then
the decimal representation of m

D is the decimal representation of cm repeated (possibly
including leading zeros). Similarly, n

D has the decimal representation of cm repeated
(possibly including leading zeros). Finally, since

10e · m
D
− n

D
is an integer

9
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it follows that these repeating decimal representations are rotations of each other by e
places, so in particular they have the same number of nonzero digits.

Remark. Many students tried to find a D satisfying the stronger hypothesis that 1/D,
2/D, . . . , (D − 1)/D are cyclic shifts of each other. For example, this holds in the famous
D = 7 case.

The official USAMO 2013 solutions try to do this by proving that 10 is a primitive root
modulo 7e for each e ≥ 1, by Hensel lifting lemma. I think this argument is actually incorrect,
because it breaks if either m or n are divisible by 7. Put bluntly, 7

49 and 8
49 are not shifts of

each other.
One may be tempted to resort to using large primes D rather than powers of 7 to deal

with this issue. However it is an open conjecture (a special case of Artin’s primitive root
conjecture) whether or not 10 (mod p) is primitive infinitely often, which is the necessary
conjecture so this is harder than it seems.
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§6 USAMO 2013/6, proposed by Titu Andreescu and Cosmin
Pohoata

Let ABC be a triangle. Find all points P on segment BC satisfying the following property: If X
and Y are the intersections of line PA with the common external tangent lines of the circumcircles
of triangles PAB and PAC, then (

PA

XY

)2

+
PB · PC
AB ·AC

= 1.

Let O1 and O2 denote the circumcenters of PAB and PAC. The main idea is to notice
that 4ABC and 4AO1O2 are spirally similar.

A

B C
P

O1

O2

X1

Y1

X2

Y2

X

Y

Claim — We have 4AO1B
+∼ 4AO2C. Hence 4ABC +∼ 4AO1O2.

Proof. Assume without loss of generality that ∠APB ≤ 90◦. Then

∠AO1B = 2∠ABP

but
∠AO2C = 2 (180− ∠APC) = 2∠ABP.

Hence ∠AO1B = ∠AO2C. Moreover, both triangles are isosceles, establishing first part
of claim. The second part follows from spiral similarities coming in pairs.

Claim — We always have (
PA

XY

)2

= 1−
(

a

b+ c

)2

.

(In particular, this does not depend on P .)
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Proof. We now delete the points B and C and remember only the fact that 4AO1O2

has angles A, B, C. The rest is a computation and several approaches are possible.
Without loss of generality A is closer to X than Y , and let the common tangents

be X1X2 and Y1Y2. We’ll perform the main calculation with the convenient scaling
OBOC = a, AOC = b, and AOB = c. Let B1 and C1 be the tangency points of X, and
let h = AM be the height of 4AOBOC .

O1 O2

A

P

M

X1

X2

X

Note that by Power of a Point, we have XX2
1 = XX2

2 = XM2 − h2. Also, by
Pythagorean theorem we easily obtain X1X2 = a2 − (b− c)2. So putting these together
gives

XM2 − h2 =
a2 − (b− c)2

4
=

(a+ b− c)(a− b+ c)

4
= (s− b)(s− c).

Therefore, we have
Then

XM2

h2
= 1 +

(s− b)(s− c)
h2

= 1 +
a2(s− b)(s− c)

a2h2

= 1 +
a2(s− b)(s− c)

4s(s− a)(s− b)(s− c)
= 1 +

a2

4s(s− a)

= 1 +
a2

(b+ c)2 − a2
=

(b+ c)2

(b+ c)2 − a2
.

Thus (
PA

XY

)2

=

(
h

XM

)2

= 1−
(

a

b+ c

)2

.

To finish, note that when P is the foot of the ∠A-bisector, we necessarily have

PB · PC
AB ·AC

=

(
b

b+ca
)(

c
b+ca

)
bc

=

(
a

b+ c

)2

.

Since there are clearly at most two solutions as PA
XY is fixed, these are the only two

solutions.
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43rd United States of America Mathematical Olympiad

Day I 12:30 PM – 5 PM EDT

April 29, 2014

Note: For any geometry problem, the first page of the solution must be a large, in-scale,
clearly labeled diagram made with drawing instruments (ruler, compass, protractor, graph pa-
per). Failure to meet any of these requirements will result in a 1-point automatic deduction.

USAMO 1. Let a, b, c, d be real numbers such that b − d ≥ 5 and all zeros x1, x2, x3, and x4 of the
polynomial P (x) = x4 + ax3 + bx2 + cx + d are real. Find the smallest value the product
(x2

1 + 1)(x2
2 + 1)(x2

3 + 1)(x2
4 + 1) can take.

USAMO 2. Let Z be the set of integers. Find all functions f : Z→ Z such that

xf(2f(y)− x) + y2f(2x− f(y)) =
f(x)2

x
+ f(yf(y))

for all x, y ∈ Z with x 6= 0.

USAMO 3. Prove that there exists an infinite set of points

. . . , P−3, P−2, P−1, P0, P1, P2, P3, . . .

in the plane with the following property: For any three distinct integers a, b and c, points
Pa, Pb and Pc are collinear if and only if a + b + c = 2014.

Copyright c© Mathematical Association of America
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43rd United States of America Mathematical Olympiad

Day II 12:30 PM – 5 PM EDT

April 30, 2014

Note: For any geometry problem, the first page of the solution must be a large, in-scale,
clearly labeled diagram made with drawing instruments (ruler, compass, protractor, graph pa-
per). Failure to meet any of these requirements will result in a 1-point automatic deduction.

USAMO 4. Let k be a positive integer. Two players A and B play a game on an infinite grid of regular
hexagons. Initially all the grid cells are empty. Then the players alternately take turns
with A moving first. In his move, A may choose two adjacent spaces in the grid which are
empty and place a counter in both of them. In his move, B may choose any counter on
the board and remove it. If at any time there are k consecutive grid cells in a line all of
which contain a counter, A wins. Find the minimum value of k for which A cannot win
in a finite number of moves, or prove that no such minimum exists.

USAMO 5. Let ABC be a triangle with orthocenter H and let P be the second intersection of the
circumcircle of triangle AHC with the internal bisector of the angle ∠BAC. Let X be
the circumcenter of triangle APB and Y the orthocenter of triangle APC. Prove that the
length of segment XY is equal to the circumradius of triangle ABC.

USAMO 6. Prove that there is a constant c > 0 with the following property: If a, b, n are positive
integers such that gcd(a + i, b + j) > 1 for all i, j ∈ {0, 1, . . . , n}, then

min{a, b} > cn · nn
2 .

Copyright c© Mathematical Association of America
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43rd United States of America Mathematical Olympiad

Day I, II 12:30 PM – 5 PM EDT

April 29 - April 30, 2014

USAMO 1. Using Vieta’s identities we have:

x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 − x1x2x3x4 ≥ 5

and so

x1(x2 + x3 + x4 − x2x3x4) + 1(x2x3 + x2x4 + x3x4 − 1) ≥ 4.

It follows that

42 ≤ [x1(x2 + x3 + x4 − x2x3x4) + 1(x2x3 + x2x4 + x3x4 − 1)]2,

and by the Cauchy-Schwarz Inequality,

42 ≤ (x2
1 + 1)[(x2 + x3 + x4 − x2x3x4)

2 + (x2x3 + x2x4 + x3x4 − 1)2]

= (x2
1 + 1)(x2

2 + 1)(x2
3 + 1)(x2

4 + 1).

The equality holds if and only if

x1(x2x3 + x2x4 + x3x4 − 1) = 1(x2 + x3 + x4 − x2x3x4),

which is equivalent to

x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 = x1 + x2 + x3 + x4,

that is, a = c. Taking x1 = ... = x4 = 1 we obtain b − d = 5 and that the smallest value
of the product in question is 16.
An alternative, shorter argument runs as follows: we have

(x2
1 + 1)(x2

2 + 1)(x2
3 + 1)(x2

4 + 1) = P (i)P (−i) =

((1− b + d) + i(c− a))(1− b + d− i(c− a)) = (b− d− 1)2 + (c− a)2 ≥ 16,

with equality if and only if b− d = 5 and a = c, both attained if x1 = ... = x4 = 1.

This problem and solutions were suggested by Titu Andreescu.
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USAMO 2. Let f be a solution of the problem. Let p be a prime. Since p divides f(p)2, p divides f(p)

and so p divides f(p)2

p
. Taking y = 0 and x = p, we deduce that p divides f(0). As p is

arbitrary, we must have f(0) = 0. Next, take y = 0 to obtain xf(−x) = f(x)2

x
. Replacing

x by −x, and combining the two relations yields f(x) = 0 or f(x) = x2 for all x.

Suppose now that there exists x0 6= 0 such that f(x0) = 0. Taking y = x0, we obtain

xf(−x) + x2
0f(2x) = f(x)2

x
, yielding x2

0f(2x) = 0 for all x and so f vanishes on even
numbers. Assume that there exists an odd number y0 such that f(y0) 6= 0, so f(y0) = y2

0.
Taking y = y0, we obtain

xf(2y2
0 − x) + y2

0f(2x− y2
0) =

f(x)2

x
+ f(y3

0).

Choosing x even, we deduce that y2
0f(2x−y2

0) = f(y3
0). This forces f(y3

0) = 0, as otherwise
we would have f(2x − y2

0) = (2x − y2
0)

2 for all even x and so y2
0(2x − y2

0)
2 = f(y3

0) for
all such x, obviously impossible. Thus f(2x − y2

0) = 0 for all even numbers x, that is f
vanishes on numbers of the form 4k + 3. But since x2f(−x) = f(x)2, f also vanishes on
all x such that −x ≡ −1 (mod 4), that is on 4Z + 1. Thus f also vanishes on all odd
numbers, contradicting the choice of y0. Hence, if f is not the zero map, then f does not
vanish outside 0 and so f(x) = x2 for all x.

In conclusion, f(x) = 0 for all x ∈ Z and f(x) = x2 for all x ∈ Z are the only possible
solutions. The first function clearly satisfies the given relation, while the second also
satisfies the Sophie Germaine identity

x(2y2 − x)2 + y2(2x− y2)2 = x3 + y6

for all x, y ∈ Z.

OR

f(0) = 0: If f(0) 6= 0, set x = 2f(0) to obtain

2(f(0))2 =
(f(2f(0)))2

2f(0)
+ f(0)

that is

2(f(0))2(2f(0)− 1) = f(2f(0))2.

But 2(2f(0)− 1) cannot be a perfect square since it is of the form 4k + 2. So f(0) = 0.

This problem and the solutions were suggested by Titu Andreescu and Gabriel Dospinescu.

USAMO 3. We claim that defining Pn to be the point with coordinates (n, n3 − 2014n2) will satisfy
the conditions of the problem. Recall that points (x1, y1), (x2, y2) and (x3, y3) are collinear
if and only if ∣∣∣∣∣∣

x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣
= 0.
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Therefore we examine the determinant∣∣∣∣∣∣

a a3 − 2014a2 1
b b3 − 2014b2 1
c c3 − 2014c2 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣

a a3 1
b b3 1
c c3 1

∣∣∣∣∣∣
− 2014

∣∣∣∣∣∣

a a2 1
b b2 1
c c2 1

∣∣∣∣∣∣
.

The first determinant on the right is a homogenous polynomial of degree four divisible by
(a− b)(b− c)(c− a). The remaining factor has degree one, is symmetric, and yields an ab3

term when the product is expanded, hence must be (a+ b+ c). The second determinant is
a homogenous polynomial of degree three divisible by (a− b)(b− c)(c− a), and comparing
coefficients of the ab2 term we see that this is the desired polynomial. Thus

∣∣∣∣∣∣

a a3 − 2014a2 1
b b3 − 2014b2 1
c c3 − 2014c2 1

∣∣∣∣∣∣
= (a− b)(b− c)(c− a)(a + b + c− 2014).

It follows that for distinct a, b and c this expression will equal zero if and only if a+b+c =
2014, as desired.

This solution was suggested by Razvan Gelca.

OR

First, note that the translation x 7→ x − 671 in the indices allows us to replace 2014 in
the statement by 1. Now it comes natural to look for a polynomial pattern (P (x), Q(x))
in the coordinates of a point. The collinearity condition translates, in coordinates, into

P (a)Q(b) + P (b)Q(c) + P (c)Q(a)− P (a)Q(c)− P (b)Q(a)− P (c)Q(b) = 0.

This should happen only when a + b + c − 1 = 0 or when two of a, b, c are equal. Hence
the left-hand side should be of the form (a + b + c− 1)(b− a)(c− b)(a− c)R(a, b, c). We
can try the simplest case R = 1 so that the dominant coefficients of both P (x) and Q(x)
are 1. P (x) and Q(x) cannot both have even degree because then the 4th degree terms
on the left cancel out, while on the right there are clearly 4th degree terms. Hence one of
the polynomials P (x) and Q(x) has degree 3, the other has degree 1. By a translation we
can turn the degree 1 polynomial into x, thus we may assume that P (x) = x. Thus we
should have

(c− b)Q(a) + (a− c)Q(b) + (b− a)Q(c)

= (a + b + c− 1)(b− a)(c− b)(a− c).

So we let Q(x) = x3 + αx2 + βx + γ. Note that we are free to choose β and γ any way we
want, since they cancel out. So we let Q(x) = x3 + αx2.

For a = 0, b = −1, c = 1 the above identity yields −2Q(0)−Q(−1)−Q(1) = 2, and hence
α = −1.

Returning to the case of the problem with 2014 instead of 1, we have the points Pn =
(n− 671, (n− 671)3 − (n− 671)2). But we can simplify this since we can replace P (x) by
x and ignore the linear part of Q(x). We thus obtain the simpler infinite family of points

Pn = (n, n3 − 3 · 671n2 − n2) = (n, n3 − 2014n2)

4



satisfying the conditions of the problem.

This problem and the second solution was suggested by Sam Vandervelde.

USAMO 4. The answer is k = 6. First we show that A cannot win for k ≥ 6. Color the grid in three
colors so that no two adjacent spaces have the same color, and arbitrarily pick one color
C. B will play by always removing a counter from a space colored C that A just played.
If there is no such counter, B plays arbitrarily. Because A cannot cover two spaces colored
C simultaneously, it is possible for B to play in this fashion. Now note that any line of
six consecutive squares contains two spaces colored C. For A to win he must cover both,
but B’s strategy ensures at most one space colored C will have a counter at any time.

Now we show that A can obtain 5 counters in a row. Take a set of cells in the grid forming
the shape shown below. We will have A play counters only in this set of grid cells until
this is no longer possible. Since B only removes one counter for every two A places, the
number of counters in this set will increase each turn, so at some point it will be impossible
for A to play in this set anymore. At that point any two adjacent grid spaces in the set
have at least one counter between them.

Consider only the top row of cells in the set, and take the lengths of each consecutive run
of cells. If there are two adjacent runs that have a combined length of at least 4, then A
gets 5 counters in a row by filling the space in between. Otherwise, a bit of case analysis
shows that there exists a run of 1 counter which is neither the first nor last run. This
single counter has an empty space on either side of it on the first row. As a result, the four
spaces of the second row touching these two empty spaces all must have counters. Then
A can play in the 5th cell on either side of these 4 to get 5 counters in a row. So in all
cases A can win with k ≤ 5.

This problem and solution was suggested by Palmer Mebane.

USAMO 5. It is well-known that the reflection H ′ of the orthocenter H in the line AC lies on the
circumcircle of triangle ABC. Hence, the circumcenter of triangle CAH ′ coincides with
the circumcenter of triangle ABC. But since H ′ is the reflection of H in the line AC, the
triangles ACH and CAH ′ are symmetric with respect to BC, and the circumcenter O′ of
triangle ACH must be the reflection of the circumcenter of triangle CAH ′ in the line BC,
i. e. the reflection of the circumcenter of triangle ABC in the line CA.

Now since the quadrilateral AHPC is cyclic and since H, Y are the orthocenters of
triangles ABC, and APC, respectively, we have that

∠ABC = 180◦ − ∠AHC = 180◦ − ∠APC = ∠AY C.

Hence the point Y lies on the circumcircle of triangle ABC, and therefore OC = OY = R,
where R denotes the circumradius of triangle ABC.
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On the other hand, note that the lines OX, XO′, O′O are the perpendicular bisectors of
the segments AB, AP , and AC, respectively, we get

∠OXO′ = ∠BAP = ∠PAC = m(∠XO′O.

Thus OO′ = OX. Combining this with OC = OY and with the parallelism of the lines
XO′ and Y C (note that these two lines are both perpendicular to AP ), we conclude that
the trapezoid XY CO′ is isosceles, and therefore XY = O′C = OC = R. This completes
our proof. ¤

Remark. If ABC is right-angled at A, then the statement is trivially true if we convene
that the circumcenter of AB is the midpoint of AB and that the orthocenter of AC is the
midpoint of AC. Then, we have that XY = 1

2
BC = R.

OR

A

B

C

H

O

X

Y

Z

P

Q

Because ABC is acute, H lies inside the triangle. We consider the configuration show
above. (For other possible configurations, it is not difficult to adjust our proof properly.)

Let O and Z denote the circumcenters of triangles ABC and APC respectively. Let ω
and r denote the circumcircle and the circumradius of triangle ABC respectively. We will
show that

XY CZ is an isoscelees trapezoid with XY = CZ = r. (1)

Because X and Z are the circumcenters of triangle APB and APC, line XZ is the perpen-
dicular bisector of segment AP . Because Y is the orthocenter of triangle APC, CY ⊥ AP .
Hence both lines XZ and CY are perpendicular to line AP , implying that XY ZC is a
trapezoid with XZ ‖ CY .
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Because X and O are the circumcenters of triangles APB and ABC, line XO is the
perpendicular bisector of segment AB. Because XO ⊥ AB and XZ ⊥ AP , the acute
angles formed by lines XO and XZ is equal to the acute angle formed by lines AP and
AB; that is, ∠OXZ = ∠BAP . Likewise, we can can show that ∠OZX = ∠CAP .
Therefore, we have ∠OXZ = ∠BAP = ∠CAP = ∠OZX, implying that OX = OZ; that
is, O lies on the perpendicular bisector of segment XZ.

Because H is the orthocenter of acute triangle ABC, ∠AHC = 180◦ − ∠ABC. Because
APHC is cyclic, we have ∠APC = ∠AHC = 180◦ − ∠ABC. Now in obtuse triangle
APC, ∠AY C = 180◦ − ∠APC = ∠ABC. (This relates to the fact of orthocenter group:
if one point is the orthocenter of the triangle formed by the other three points, then any of
the four point is the orthocenter of the triangle formed by the other three.) In particular,
this means that Y lies on ω; that is, OY = OC = r.

Note that in trapezoid XY CZ, the perpendicular bisectors of the bases Y C and XZ share
a common point O. Thus, these two bisectors must coincide; that is, XY CZ is an isosceles
trapezoid with XY = CZ, establishing the first part of (??).

To complete our proof, it suffices to show that CZ = r. Let Q be the reflection of H across
line AC. It is well known that Q lies ω (because ∠ACQ = ∠ACH = 90◦ − ∠BAC =
∠ABH = ∠ABQ.) We note that triangle AQC and its circumcenter O and triangle AHC
and its circumcenter Z are respective images of each other across line AC. In particular,
we conclude that CZ = CO = r, completing our proof.

This problem and solutions were suggested by Titu Andreescu and Cosmin Pohoata.

USAMO 6. Let a, b, n be positive integers as in the statement of the problem. Let Pn be the set of
prime numbers not exceeding n. We will need the following

There is a positive integer n0 such that for all n ≥ n0 we have

∑
p∈Pn

(
n

p
+ 1

)2

<
2

3
n2.

Proof. Expanding and dividing by n2, and observing that |Pn| ≤ n, it suffices to prove the
inequality ∑

p∈Pn

1

p2
+

2

n

∑
p∈Pn

1

p
+

1

n
<

2

3
.

Since
2

n

∑
p∈Pn

1

p
<

2

n

n∑
i=2

1

i
<

2

n
log n,

it suffices to prove the existence of a constant r < 2
3

such that
∑

p∈Pn

1
p2 < r. But

∑
p∈Pn

1

p2
≤ 1

4
+

1

9
+

n∑

k=1

1

(2k + 1)(2k + 3)
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=
1

4
+

1

9
+

n∑

k=1

1

2

(
1

2k + 1
− 1

2k + 3

)

=
1

4
+

1

9
+

1

2

(
1

3
− 1

2n + 3

)
<

1

4
+

1

9
+

1

6
<

1

3

and we can take r = 1
4

+ 1
9

+ 1
6
.

From now on we fix such n0, and we prove the statement assuming n ≥ n0. Note that
for any p ∈ Pn there are at most n

p
+ 1 numbers i ∈ {0, 1, . . . , n − 1} such that p | a + i,

and likewise for j ∈ {0, 1, . . . , n− 1} such that p | b + j. Thus there are at most
(

n
p

+ 1
)2

pairs (i, j) such that p | gcd(a+ i, b+ j). Using the previous lemma, we deduce that there
are less than 2

3
n2 pairs (i, j) with i, j ∈ {0, 1, . . . , n− 1} such that p | gcd(a + i, b + j) for

some p ∈ Pn.

Let N be the least integer greater than or equal to n2

3
. By the above, there are at least N

pairs (i, j) with i, j ∈ {0, 1, . . . , n − 1} such that gcd(a + i, b + j) is not divisible by any
prime in Pn. Call these pairs (is, js) for s = 1, 2, . . . , N . For each pair, choose a prime ps

that divides gcd(a + is, b + js) (since, by hypothesis, gcd(a + is, b + js) > 1); thus ps > n.
The map s 7→ ps is injective, for if ps = ps′ , then ps | is−is′ , implying is = is′ , and similarly
js = js′ , hence s = s′.

We conclude that
∏n−1

i=0 (a + i) is a multiple of
∏N

s=1 ps. Since the ps are distinct prime
numbers greater than n, then,

(a + n)n >

n−1∏
i=0

(a + i) ≥
N∏

s=1

ps ≥
N∏

i=1

(n + 2i− 1).

Let X be this last product. Then

X2 =
N∏

i=1

[(n + 2i− 1)(n + 2(N + 1− i)− 1)] >

N∏
i=1

(2Nn) = (2Nn)N ,

where the inequality holds because

(n + 2i− 1)(n + 2(N + 1− i)− 1) > n(2(N + 1− i)− 1) + (2i− 1)n = 2Nn.

Finally

(a + n)n > (2Nn)
N
2 ≥

(
2n3

3

)n2

6

.

Thus,

a ≥
(

2

3

) 1
6
·n
· nn

2 − n,

which is larger than cn · nn
2 when n is large enough, for any constant c <

(
2
3

) 1
6 . Similarly,

the same inequality holds for b.
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This shows that min{a, b} ≥ cn ·nn
2 as long as n is large enough. By shrinking c sufficiently,

we can ensure the inequality holds for all n.

One can see that the argument is not sharp, so that the factor n
n
2 can be improved to nrn

for some constant r slightly larger than 1
2
. Consequently, for any c > 0, the inequality in

the problem holds if n is large enough.

This problem and solution was suggested by Titu Andreescu and Gabriel Dospinescu.

Copyright c© Committee on the American Mathematics Competitions,
Mathematical Association of America
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USAMO 2014 Solution Notes web.evanchen.cc, updated April 17, 2020

§0 Problems

1. Let a, b, c, d be real numbers such that b− d ≥ 5 and all zeros x1, x2, x3, and x4
of the polynomial P (x) = x4 + ax3 + bx2 + cx+ d are real. Find the smallest value
the product (x21 + 1)(x22 + 1)(x23 + 1)(x24 + 1) can take.

2. Find all f : Z→ Z such that

xf (2f(y)− x) + y2f (2x− f(y)) =
f(x)2

x
+ f (yf(y))

for all x, y ∈ Z such that x 6= 0.

3. Prove that there exists an infinite set of points

. . . , P−3, P−2, P−1, P0, P1, P2, P3, . . .

in the plane with the following property: For any three distinct integers a, b, and c,
points Pa, Pb, and Pc are collinear if and only if a+ b+ c = 2014.

4. Let k be a positive integer. Two players A and B play a game on an infinite grid of
regular hexagons. Initially all the grid cells are empty. Then the players alternately
take turns with A moving first. In her move, A may choose two adjacent hexagons
in the grid which are empty and place a counter in both of them. In his move, B
may choose any counter on the board and remove it. If at any time there are k
consecutive grid cells in a line all of which contain a counter, A wins. Find the
minimum value of k for which A cannot win in a finite number of moves, or prove
that no such minimum value exists.

5. Let ABC be a triangle with orthocenter H and let P be the second intersection of
the circumcircle of triangle AHC with the internal bisector of ∠BAC. Let X be
the circumcenter of triangle APB and let Y be the orthocenter of triangle APC.
Prove that the length of segment XY is equal to the circumradius of triangle ABC.

6. Prove that there is a constant c > 0 with the following property: If a, b, n are
positive integers such that gcd(a+ i, b+ j) > 1 for all i, j ∈ {0, 1, . . . , n}, then

min{a, b} > (cn)n/2.
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§1 USAMO 2014/1, proposed by Titu Andreescu

Let a, b, c, d be real numbers such that b − d ≥ 5 and all zeros x1, x2, x3, and x4 of the

polynomial P (x) = x4 + ax3 + bx2 + cx + d are real. Find the smallest value the product

(x21 + 1)(x22 + 1)(x23 + 1)(x24 + 1) can take.

The answer is 16 . This can be achieved by taking x1 = x2 = x3 = x4 = 1, whence
the product is 24 = 16, and b− d = 5.

Now, we prove this is a lower bound. Let i =
√
−1. The key observation is that

4∏
j=1

(
x2j + 1

)
=

4∏
j=1

(xj − i)(xj + i) = P (i)P (−i).

Consequently, we have(
x21 + 1

) (
x22 + 1

) (
x23 + 1

) (
x21 + 1

)
= (b− d− 1)2 + (a− c)2

≥ (5− 1)2 + 02 = 16.

This proves the lower bound.
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§2 USAMO 2014/2, proposed by Titu Andreescu

Find all f : Z→ Z such that

xf (2f(y)− x) + y2f (2x− f(y)) =
f(x)2

x
+ f (yf(y))

for all x, y ∈ Z such that x 6= 0.

The answer is f(x) ≡ 0 and f(x) ≡ x2. Check that these work.
Now let’s prove these are the only solutions. Put y = 0 to obtain

xf (2f(0)− x) =
f(x)2

x
+ f(0).

Now we claim f(0) = 0 . If not, select a prime p - f(0) and put x = p 6= 0. In the above,

we find that p | f(p)2, so p | f(p) and hence p | f(p)2

p . From here we derive p | f(0),
contradiction. Hence

f(0) = 0.

The above then implies that

x2f(−x) = f(x)2

holds for all nonzero x, but also for x = 0. Let us now check that f is an even function.
In the above, we may also derive f(−x)2 = x2f(x). If f(x) 6= f(−x) (and hence x 6= 0),
then subtracting the above and factoring implies that f(x) + f(−x) = −x2; we can then
obtain by substituting the relation[

f(x) +
1

2
x2
]2

= −3

4
x4 < 0

which is impossible. This means f(x)2 = x2f(x), thus

f(x) ∈ {0, x2} ∀x.

Now suppose there exists a nonzero integer t with f(t) = 0. We will prove that
f(x) ≡ 0. Put y = t in the given to obtain that

t2f(2x) = 0

for any integer x 6= 0, and hence conclude that f(2Z) ≡ 0. Then selecting x = 2k 6= 0 in
the given implies that

y2f(4k − f(y)) = f(yf(y)).

Assume for contradiction that f(m) = m2 now for some odd m 6= 0. Evidently

m2f(4k −m2) = f(m3).

If f(m3) 6= 0 this forces f(4k −m2) 6= 0, and hence m2(4k −m2)2 = m6 for arbitrary
k 6= 0, which is clearly absurd. That means

f(4k −m2) = f(m2 − 4k) = f(m3) = 0

for each k 6= 0. Since m is odd, m2 ≡ 1 (mod 4), and so f(n) = 0 for all n other than
±m2 (since we cannot select k = 0).
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Now f(m) = m2 means that m = ±1. Hence either f(x) ≡ 0 or

f(x) =

{
1 x = ±1

0 otherwise.

To show that the latter fails, we simply take x = 5 and y = 1 in the given.
Hence, the only solutions are f(x) ≡ 0 and f(x) ≡ x2.
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§3 USAMO 2014/3, proposed by Razvan Gelca

Prove that there exists an infinite set of points

. . . , P−3, P−2, P−1, P0, P1, P2, P3, . . .

in the plane with the following property: For any three distinct integers a, b, and c, points Pa,

Pb, and Pc are collinear if and only if a+ b+ c = 2014.

The construction

Pn =

(
n− 2014

3
,

(
n− 2014

3

)3
)

works fine, and follows from the following claim:

Claim — If x, y, z are distinct real numbers then the points (x, x3), (y, y3), (z, z3)
are collinear if and only if x+ y + z = 0.

Proof. Note that by the “shoelace formula”, the collinearity is equivalent to

0 = det

x x3 1
y y3 1
z z3 1


But the determinant equals∑

cyc

x(y3 − z3) = (x− y)(y − z)(z − x)(x+ y + z).
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§4 USAMO 2014/4, proposed by Palmer Mebane

Let k be a positive integer. Two players A and B play a game on an infinite grid of regular

hexagons. Initially all the grid cells are empty. Then the players alternately take turns with A

moving first. In her move, A may choose two adjacent hexagons in the grid which are empty

and place a counter in both of them. In his move, B may choose any counter on the board and

remove it. If at any time there are k consecutive grid cells in a line all of which contain a counter,

A wins. Find the minimum value of k for which A cannot win in a finite number of moves, or

prove that no such minimum value exists.

The answer is k = 6.

Proof that A cannot win if k = 6. We give a strategy for B to prevent A’s victory.
Shade in every third cell, as shown in the figure below. Then A can never cover two
shaded cells simultaneously on her turn. Now suppose B always removes a counter on a
shaded cell (and otherwise does whatever he wants). Then he can prevent A from ever
getting six consecutive counters, because any six consecutive cells contain two shaded
cells.

Example of a strategy for A when k = 5. We describe a winning strategy for A
explicitly. Note that after B’s first turn there is one counter, so then A may create an
equilateral triangle, and hence after B’s second turn there are two consecutive counters.
Then, on her third turn, A places a pair of counters two spaces away on the same line.
Label the two inner cells x and y as shown below.

x y

Now it is B’s turn to move; in order to avoid losing immediately, he must remove either
x or y. Then on any subsequent turn, A can replace x or y (whichever was removed) and
add one more adjacent counter. This continues until either x or y has all its neighbors
filled (we ask A to do so in such a way that she avoids filling in the two central cells
between x and y as long as possible).

So, let’s say without loss of generality (by symmetry) that x is completely surrounded
by tokens. Again, B must choose to remove x (or A wins on her next turn). After x is
removed by B, consider the following figure.
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x y

We let A play in the two marked green cells. Then, regardless of what move B plays,
one of the two choices of moves marked in red lets A win. Thus, we have described a
winning strategy when k = 5 for A.

8
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§5 USAMO 2014/5, proposed by Titu Andreescu and Cosmin
Pohoata

Let ABC be a triangle with orthocenter H and let P be the second intersection of the circumcircle

of triangle AHC with the internal bisector of ∠BAC. Let X be the circumcenter of triangle

APB and let Y be the orthocenter of triangle APC. Prove that the length of segment XY is

equal to the circumradius of triangle ABC.

A

B C

Q

P

X

Y

X ′

Y ′

H

B′

O

We eliminate the floating orthocenter by reflecting P across AC to Q. Then Q lies
on (ABC) and moreover ∠QAC = 1

2∠BAC. This motivates us to reflect B, X, Y to B′,
X ′, Y ′ and complex bash with respect to 4AQC. Obviously

y′ = a+ q + c.

Now we need to compute x′. You can get this using the formula

x′ = a+
(b′ − a)(q − a)

(
q − a− b′ − a

)
(b′ − a)(q − a)− (b′ − a)(q − a)

.

Using the angle condition we know b = c3

q2
, and then that

b′ = a+ c− acb = a+ c− aq2

c2
.

9
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Therefore

x′ = a+

(
c− aq2

c2

)
(q − a)

(
1
q −

1
a −

1
c + c2

aq2

)
(
c− aq2

c2

)(
1
q −

1
a

)
−
(
1
c −

c2

aq2

)
(q − a)

= a+

c3−aq2
c2

(q − a)
(
1
q −

1
a −

1
c + c2

aq2

)
− c3−aq2

c2
q−a
qa + c3−aq2

aq2c
(q − a)

= a+

1
q −

1
a −

1
c + c2

aq2

− 1
qa + c

aq2

= a+
c2 − q2 + aq − aq2

c

c− q
= a+ c+ q +

aq

c

whence ∣∣x′ − y′∣∣ =
∣∣∣aq
c

∣∣∣ = 1.
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§6 USAMO 2014/6, proposed by Gabriel Dospinescu

Prove that there is a constant c > 0 with the following property: If a, b, n are positive integers
such that gcd(a+ i, b+ j) > 1 for all i, j ∈ {0, 1, . . . , n}, then

min{a, b} > (cn)n/2.

Let N = n+ 1 and assume N is (very) large. We construct an N ×N with cells (i, j)
where 0 ≤ i, j ≤ n and in each cell place a prime p dividing gcd(a+ i, b+ j).

The central claim is at least 50% of the primes in this table exceed 0.001n2. We count
the maximum number of squares they could occupy:

∑
p

⌈
N

p

⌉2
≤
∑
p

(
N

p
+ 1

)2

= N2
∑
p

1

p2
+ 2N

∑
p

1

p
+
∑
p

1.

Here the summation runs over primes p ≤ 0.001n2.
Let r = π(0.001n2) denote the number of such primes. Now we consider the following

three estimates. First, ∑
p

1

p2
<

1

2

which follows by adding all the primes directly with some computation. Moreover,

∑
p

1

p
<

r∑
k=1

1

k
= O(log r) < o(N)

using the harmonic series bound, and∑
p

1 < r ∼ O
(
N2

lnN

)
< o(N2)

via Prime Number Theorem. Hence the sum in question is certainly less than 1
2N

2 for N
large enough, establishing the central claim.

Hence some column a + i has at least one half of its primes greater than 0.001n2.
Because this is greater than n for large n, these primes must all be distinct, so a + i
exceeds their product, which is larger than(

0.001n2
)N/2

> cn · nn

where c is some constant (better than the requested bound).
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44th United States of America Mathematical Olympiad

Day I 12:30 PM – 5 PM EDT

April 28, 2015

Note: For any geometry problem, the first page of the solution must be a large, in-scale,
clearly labeled diagram made with drawing instruments (ruler, compass, protractor, graph pa-
per). Failure to meet this requirement will result in a 1-point automatic deduction.

USAMO 1. Solve in integers the equation

x2 + xy + y2 =

(
x + y

3
+ 1

)3

.

USAMO 2. Quadrilateral APBQ is inscribed in circle ω with ∠P = ∠Q = 90◦ and AP = AQ < BP .
Let X be a variable point on segment PQ. Line AX meets ω again at S (other than A).
Point T lies on arc AQB of ω such that XT is perpendicular to AX. Let M denote the
midpoint of chord ST . As X varies on segment PQ, show that M moves along a circle.

USAMO 3. Let S = {1, 2, . . . , n}, where n ≥ 1. Each of the 2n subsets of S is to be colored red or
blue. (The subset itself is assigned a color and not its individual elements.) For any set
T ⊆ S, we then write f(T ) for the number of subsets of T that are blue.

Determine the number of colorings that satisfy the following condition: for any subsets T1

and T2 of S,
f(T1)f(T2) = f(T1 ∪ T2)f(T1 ∩ T2).

Copyright c© Mathematical Association of America
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44th United States of America Mathematical Olympiad

Day II 12:30 PM – 5 PM EDT

April 29, 2015

Note: For any geometry problem, the first page of the solution must be a large, in-scale,
clearly labeled diagram made with drawing instruments (ruler, compass, protractor, graph pa-
per). Failure to meet this requirement will result in a 1-point automatic deduction.

USAMO 4. Steve is piling m ≥ 1 indistinguishable stones on the squares of an n × n grid. Each
square can have an arbitrarily high pile of stones. After he is finished piling his stones
in some manner, he can then perform stone moves, defined as follows. Consider any four
grid squares, which are corners of a rectangle, i.e. in positions (i, k), (i, l), (j, k), (j, l) for
some 1 ≤ i, j, k, l ≤ n, such that i < j and k < l. A stone move consists of either removing
one stone from each of (i, k) and (j, l) and moving them to (i, l) and (j, k) respectively,
or removing one stone from each of (i, l) and (j, k) and moving them to (i, k) and (j, l)
respectively.

Two ways of piling the stones are equivalent if they can be obtained from one another by
a sequence of stone moves.

How many different non-equivalent ways can Steve pile the stones on the grid?

USAMO 5. Let a, b, c, d, e be distinct positive integers such that a4 + b4 = c4 + d4 = e5. Show that
ac+ bd is a composite number.

USAMO 6. Consider 0 < λ < 1, and let A be a multiset of positive integers. Let An = {a ∈ A : a ≤ n}.
Assume that for every n ∈ N, the set An contains at most nλ numbers. Show that there
are infinitely many n ∈ N for which the sum of the elements in An is at most n(n+1)

2
λ.

(A multiset is a set-like collection of elements in which order is ignored, but repetition
of elements is allowed and multiplicity of elements is significant. For example, multisets
{1, 2, 3} and {2, 1, 3} are equivalent, but {1, 1, 2, 3} and {1, 2, 3} differ.)

Copyright c© Mathematical Association of America
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44th United States of America Mathematical Olympiad Solutions

Day I, II 12:30 PM – 5 PM EDT

April 28 - April 29, 2015

USAMO 1. Solve in integers the equation

x2 + xy + y2 =

(
x+ y

3
+ 1

)3

.

Solution: Let x+ y = 3k, with k ∈ Z. Then x2 + x(3k− x) + (3k− x)2 = (k+ 1)3, which
reduces to

x2 − (3k)x− (k3 − 6k2 + 3k + 1) = 0.

Its discriminant ∆ is

9k2 + 4(k3 − 6k2 + 3k + 1) = 4k3 − 15k2 + 12k + 4.

We notice the (double) root k = 2, so ∆ = (4k+1)(k−2)2. It follows that 4k+1 = (2t+1)2

for some nonnegative integer t, hence k = t2 + t and

x =
1

2
(3(t2 + t)± (2t+ 1)(t2 + t− 2)).

We obtain (x, y) = (t3 + 3t2 − 1,−t3 + 3t + 1) and (x, y) = (−t3 + 3t + 1, t3 + 3t2 − 1),
t ∈ {0, 1, 2, ...}.

OR

One can also try to simplify the original equation as much as possible. First with k =
x+y
3

+ 1 we get
x2 − 3xk + 3x = k3 − 9k2 + 18k − 9.

But then we recognize terms from the expansion of (k−3)3 so we use s = k−3 and obtain

x2 − 3xs− 6x = s3 − 9s− 9.

So again it becomes natural to use x− 3 = u. The equation becomes

u2 − 3su− s3 = 0.

We view this as a quadratic in u, whose discriminant is s2(9 + 4s), and so 9 + 4s must be
a perfect square, and because it is odd, it must be of the form (2t + 1)2. It follows that
s = t2 + t− 2, and so k = t2 + t+ 1. We obtain the same family of solutions.
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USAMO 2. Quadrilateral APBQ is inscribed in circle ω with ∠P = ∠Q = 90◦ and AP = AQ < BP .
Let X be a variable point on segment PQ. Line AX meets ω again at S (other than A).
Point T lies on arc AQB of ω such that XT is perpendicular to AX. Let M denote the
midpoint of chord ST . As X varies on segment PQ, show that M moves along a circle.

Solution: Let O denote the center of ω, and let W denote the midpoint of segment AO.
Denote by Ω the circle centered at W with radius WP . We will show that WM = WP ,
which will imply that M always lies on Ω and so solve the problem.

We present two solutions. The first solution is more computational (in particular, with
extensive applications of the formula for a median of a triangle); the second is more
synthetic.

A

P

B

Q

X

S

O

M

W

T

Set r to be the radius of circle ω. Applying the median formula in trianglesAPO, SWT,ASO,ATO
gives

4WP 2 = 2AP 2 + 2OP 2 − AO2 = 2AP 2 + r2,

4WM2 = 2WS2 + 2WT 2 − ST 2,

2WS2 = AS2 +OS2 − AO2/2 = AS2 + r2/2,

2WT 2 = AT 2 +OT 2 − AO2/2 = AT 2 + r2/2.

Adding the last three equations yields 4WM2 = AS2 +AT 2−ST 2 +r2. It suffices to show
that

4WP 2 = 4WM2 or AS2 + AT 2 − ST 2 = 2AP 2. (1)

Because XT ⊥ AS,

AT 2 − ST 2 = (AX2 +XT 2)− (SX2 +XT 2)

3



= AX2 − SX2

= (AX +XS)(AX −XS)

= AS(AX −XS).

It follows that AS2 + AT 2 − ST 2 = AS2 + AS · (AX −XS) = AS2 + AS(2AX − AS) =
2AS ·AX, and (1) reduces to AP 2 = AS ·AX, which is true because triangle APX is similar
to triangle ASP (as ∠PAX = ∠SAP and ∠APX = arc(AQ)/2 = arc(AP )/2 = ∠ASP ).

OR

A

P

B

Q

X

S

O

M

W

U

V

T

R

In the following solution, we use directed distances and directed angles in order to avoid
issues with configuration (segments ST and PQ may intersect, or may not as depicted in
the figure.)

Let R be the foot of the perpendicular from A to line ST . Note that OM ⊥ ST , and so
ARMO is a right trapezoid. Let U be the midpoint of segment RM . Then WU is the
midline of the trapezoid. In particular, WU ⊥ RM . Hence line WU is the perpendicular
bisector of segment RM . It is also clear that AW is the perpendicular bisector of segment
PQ. Therefore, W is the intersection of the perpendicular bisectors of segments RM and
PQ. It suffices to show that quadrilateral PQMR is cyclic, since then W must be its
circumcenter, and so WP = WM .

(To be precise, this argument fails when ST and PQ are parallel, because then R = M
and the perpendicular bisector of RM is not defined. However, it is easy to see that this
can happen for only one position of X. Because the argument works for all other X,
continuity then implies that M lies on Ω for this exceptional case as well.)
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Let lines PQ and ST meet in V . By the converse of the power-of-a-point theorem, it
suffices to show that V P · V Q = V R · VM . On the other hand, because PQTS is cyclic,
by the power-of-a-point theorem, we have V P · V Q = V S · V T . Therefore, we only need
to show that

V S · V T = V R · VM. (2)

Note that M is the midpoint of segment ST . Then (2) is equivalent to

2V S · V T = V R · (2VM) = V R · (V S + V T )

or
V S · V T − V S · V R = V T · V R− V T · V S

or equivalently

V S ·RT = V T · SR or
V S

SR
=
V T

RT
. (3)

We claim that XS bisects ∠V XR. Indeed, because AB is the symmetry line of the kite
APBQ, AB ⊥ PQ, and so ∠V XS = ∠QXA = 90◦ −∠XAO = 90◦ −∠SAO. Because O
is the circumcenter of triangle AST ,

∠V XS = 90◦ − ∠SAO = ∠ATS.

On the other hand, because ∠AXT and ∠ART are both right angles, quadrilateral AXRT
is cyclic, implying that ∠SXR = ∠ATR = ∠ATS. Our claim follows from the last two
equations.

Combining our claim and the fact that XS ⊥ XT , we know that XS and XT are the
interior and exterior bisectors of ∠V XR, from which (3) follows, by the angle-bisector
theorem. We saw that (3) was equivalent to (2) and that this was enough to show that
PQMR is cyclic, which completes the solution, so we are done.

USAMO 3. Let S = {1, 2, . . . , n}, where n ≥ 1. Each of the 2n subsets of S is to be colored red or
blue. (The subset itself is assigned a color and not its individual elements.) For any set
T ⊆ S, we then write f(T ) for the number of subsets of T that are blue.

Determine the number of colorings that satisfy the following condition: for any subsets T1
and T2 of S,

f(T1)f(T2) = f(T1 ∪ T2)f(T1 ∩ T2).

Solution: The answer is 3n + 1.

Specifically, the colorings we want are of the following forms: either there are no blue sets;
or for each element x ∈ S we define one of three types of restriction — either x must be
in T , x can’t be in T , or x is unrestricted — and the blue sets T are exactly the ones that
satisfy every restriction. It’s easy to check such a coloring meets the condition, using the
formula

f(T ) =
∏
x∈T

ax
∏
x/∈T

bx,
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where ax = 2 if x is unrestricted and 1 otherwise, and bx = 0 if x is required to be present
and 1 otherwise.

We want to show that if there’s at least one blue set, then the class of blue sets is of this
form.

If some element of S is in every blue set, take it out and induct. If some element of S is
not in any blue set, take it out and induct. Otherwise, every element x has some blue set
containing it and some blue set not containing it. In this case we’ll show that all sets are
blue (i.e. every element is unrestricted).

First show ∅ is blue. To show this, let T be a minimal blue set. If nonempty, take x ∈ T ;
by assumption there’s blue T ′ not containing x. Then the condition is violated with T and
T ′, since f(T ∩ T ′) = 0. Next, show any singleton is blue. Otherwise, let U be a minimal
blue set containing x, and let T = {x} and T ′ = U \{x}. We get 1 ·m = 1 · (1+m) (where
m = f(T ′)), a contradiction. Finally, any set is blue. Otherwise, let U be a minimal
non-blue set and x, y two different elements. Taking T = U \ {x}, T ′ = U \ {y} gives a
contradiction.

USAMO 4. Steve is piling m ≥ 1 indistinguishable stones on the squares of an n × n grid. Each
square can have an arbitrarily high pile of stones. After he is finished piling his stones
in some manner, he can then perform stone moves, defined as follows. Consider any four
grid squares, which are corners of a rectangle, i.e. in positions (i, k), (i, l), (j, k), (j, l) for
some 1 ≤ i, j, k, l ≤ n, such that i < j and k < l. A stone move consists of either removing
one stone from each of (i, k) and (j, l) and moving them to (i, l) and (j, k) respectively,
or removing one stone from each of (i, l) and (j, k) and moving them to (i, k) and (j, l)
respectively.

Two ways of piling the stones are equivalent if they can be obtained from one another by
a sequence of stone moves.

How many different non-equivalent ways can Steve pile the stones on the grid?

Solution: We think of the pilings as assigning a positive integer to each square on the
grid. Now, we restrict ourselves to the types of moves in which we take a lower left and
upper right stone and move them to the upper left and lower right of our chosen rectangle.
Call this a Type 1 stone move. We claim that we can perform a sequence of Type 1 stone
moves on any piling to obtain an equivalent piling for which we cannot perform any Type
1 move, i.e. in which no square that has stones is above and to the right of any other
square that has stones. We call such a piling a “down-right” piling.

To prove that any piling is equivalent to a down-right piling, first consider the squares in
the leftmost column and topmost row of the grid. Let a be the entry (number of stones) in
the upper left corner, and let b and c be the sum of the remaining entries in the leftmost
column and topmost row respectively. If b < c, we can perform a sequence of Type 1 stone
moves to remove all the stones from the leftmost column except for the top entry, and if
c < b we can similarly clear all squares in the top row except for the top left square. In
the former case, we can now ignore the leftmost column and repeat the process on the
second-to-leftmost column and the top row; similarly, in the latter case, we can ignore the
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top row and proceed as before. Since the corner square a cannot be part of any Type 1
move at each step in the process, it follows that we end up with a down-right piling.

We next show that down-right pilings in any size grid (not necessarily n×n) are uniquely
determined by their row-sums and column-sums, given that the row sums and column sums
are nonnegative integers which sum to m both along the rows and the columns. Let the
topmost row sum be R1 and the leftmost column sum be C1. Then the upper left square
must contain min(R1, C1) stones, since otherwise there would be stones both in the first
row and first column that are not in the upper left square. Whichever is smaller indicates
that either the row or the column respectively is empty save for the upper left square; then
we can remove this row or column and are reduced to a smaller grid in which we know
all the row and column sums. Since one-row and one-column pilings are clearly uniquely
determined by their column and row sums, it follows by induction that down-right pilings
are determined uniquely by their row-sums and column sums.

Finally, notice that row sums and column sums are both invariant under stone moves.
Therefore every piling is equivalent to a unique down-right piling. It therefore suffices to
count the number of down-right pilings, which is also equivalent to counting the number
of possibilities for the row-sums and column-sums. As stated above, the row sums and
column sums can be the sums of any two n-tuples of nonnegative integers that each sum
to m. The number of such tuples is

(
n+m−1

m

)
, and so the total number of non-equivalent

pilings is the number of pairs of these tuples, i.e.
((

n+m−1
m

))2
.

USAMO 5. Let a, b, c, d, e be distinct positive integers such that a4 + b4 = c4 + d4 = e5. Show that
ac+ bd is a composite number.

Solution: We approach indirectly by assuming that p = ac+bd is a prime. By symmetry,
we may assume that max{a, b, c, d} = a, then because a4 + b4 = c4 + d4, we infer that
min{a, b, c, d} = b. Note that ac ≡ −bd (mod p), implying that a4c4 ≡ b4d4 (mod p).
Consequently, we have

b4d4 + b4c4 ≡ a4c4 + b4c4 = c8 + c4d4 (mod p),

from which it follows that (c4 + d4)(b4 − c4) ≡ 0 (mod p). Thus, p divides at least one of
b − c, b + c, b2 + c2, c4 + d4. Because p = ac + bd > c2 + b2, and −(b2 + c2) < b − c < 0
(because b and c are distinct), p must divide c4 + d4 = e5. Thus p5 = (ac + bd)5 divides
c4 + d4, which is clearly impossible because it is evident that (ac+ bd)5 > c4 + d4.

OR

A stronger result is possible:

Claim. Suppose a, b, and e are positive integers such that a4 + b4 = e5. Then a and b
have a common prime factor.

Proof. Suppose on the contrary that gcd(a, b) = 1. If e is even, then this forces a and b
to both be odd, so a4 + b4 ≡ 2 (mod 8) and e5 ≡ 0 (mod 8), a contradiction. Thus e is
odd. Note for use below that 5 cannot divide both a and b, so we may assume without
loss that 5 does not divide a (swapping the roles of a and b if necessary).
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Factoring over the Gaussian integers we find a4 + b4 = (a2 + ib2)(a2 − ib2) and gcd(a2 +
ib2, a2− ib2) = gcd(a2 + ib2, 2a2). But gcd(a, b) = 1 implies no prime factor of a can divide
a2 + ib2 and e odd implies no prime factor of 2 divides a2 + ib2. Thus these factors are
relatively prime, and hence both are a unit multiplied by a fifth power. Since every unit
in the Gaussian integers is a fifth power, that means both factors are fifth powers, or

a2 + ib2 = (r + is)5 = r5 + 5ir4s− 10r3s2 − 10ir2s3 + 5rs4 + is5.

Thus

a2 = r(r4 − 10r2s2 + 5s4), and

b2 = s(s4 − 10r2s2 + 5r4).

Note that since gcd(a, b) = 1, gcd(r, s) = 1. Also since 5 does not divide a, it also does
not divide r. Since

gcd(r, r4 − 10r2s2 + 5s4) = gcd(r, 5s4) = gcd(r, 5) = 1,

r must be a perfect square and we have found an integer solution (x, y, z) = (r, a/r, s) to

y2 = x4 − 10x2z2 + 5z4

with gcd(x, z) = 1. The following Lemma will then complete the proof of the claim.

Lemma. There are no nontrivial (z 6= 0) integer solutions to

y2 = x4 − 10x2z2 + 5z4.

Proof. Suppose (x, y, z) is a solution in the positive integers with minimal z. Note that
this implies that x,y,z are pairwise relatively prime. (The only case that takes a little
work is that if a prime p divides x and y, then p2 divides 5z4, hence p also divides z. But
then p4 divides x2 so p2 divides x and (x/p2, y/p, z/p) is a smaller solution.) Rewrite this
as

20z4 = (x4 − 5z2)2 − y2 = (x2 − 5z2 + y)(x2 − 5z2 − y).

The two factors on the right have the same parity and their product is even. Hence both
are even. Any common factor p of x2−5z2+y

2
and x2−5z2−y

2
would have p2|5z4, hence p|z, and

p|x2−5z2+y
2

− x2−5z2−y
2

= y, a contradiction. Thus these factors of 5z4 are relatively prime.
Hence they must be ±v4 and ±5w4 for some relatively prime v and w with vw = z. Then

x2 − 5v2w2 = x2 − 5z2 =
x2 − 5z2 + y

2
+
x2 − 5z2 − y

2
= ±v4 ± 5w4

or
x2 = ±v4 + 5v2w2 ± 5w4.

If v and w both odd, then the right hand side is either 1+5+5 ≡ 3 (mod 8) or−1+5−5 ≡ 7
(mod 8), neither of which is possible for a square like the left hand side. Hence one of v
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and w is even, and in either case we get x2 ≡ ±1 (mod 4). Thus we must have the plus
sign and

x2 = v4 + 5v2w2 + 5w4.

This is not the equation we started with, so we repeat the argument above (with a few
changes). Rewrite this new equation as

5w4 = (2v2 + 5w2)2 − 4x2 = (2v2 + 5w2 + 2x)(2v2 + 5w2 − 2x).

There are two very similar cases depending on whether w is odd or even. These cases can
be forced together, but we prefer to be more clear and keep them separate.

If w is odd, then the two factors on the right are both odd and any common (odd) prime
factor p would have p2|5w4, hence p|w, and p|(2v2 + 5w2 + 2x)− (2v2 + 5w2 − 2x) = 4x,
hence p|x. But then p also divides v and we get a contradiction. Thus these factors of 5w4

are relatively prime and so must be ±t4 and ±5u4 for some relatively prime t and u with
tu = w. Then

4v2 + 10t2u2 = 4v2 + 10w2 = (2v2 + 5w2 + 2x) + (2v2 + 5w2 − 2x) = ±(t4 + 5u4).

The left hand side is positive, so we must have the plus sign, and hence

(2v)2 = t4 − 10t2u2 + 5u4.

Thus (t, 2v, u) is a solution to the original equation. Since u|w and w|z, we either have
u < z (contradicting the minimality of z) or u = z and hence t = v = 1 (giving nonsense
4 = 1− 10u2 + 5u4 ≡ 1 (mod 5)). Thus this case cannot occur.

If w is even, then the two factors are even, congruent mod 4, and their product is divisible
by 16. Hence both are multiples of 4. Any common prime factor p of 2v2+5w2+2x

4
and

2v2+5w2−2x
4

would have p2|5(w/2)4, hence p|w, and p|2v2+5w2+2x
4

− 2v2+5w2−2x
4

= x. But this

would mean p|v, a contradiction. Thus 2v2+5w2+2x
4

and 2v2+5w2−2x
4

must be ±t4 and ±5u4

for some relatively prime t and u with 2tu = w. Then

v2 + 10t2u2 = v2 +
5

2
w2 =

2v2 + 5w2 + 2x

4
+

2v2 + 5w2 − 2x

4
= ±(t4 + 5u4).

Again, the left hand side is positive, so we must have the plus sign, and hence

v2 = t4 − 10t2u2 + 5u4.

Thus (t, v, u) is a solution to the original equation and since 2u|w and w|z, we have u < z.
This contradicts the minimality of z and completes the proof of the lemma.

Remark. One can use essentially the same argument to show that any nontrivial integer
solution to x2+y4 = z5 has gcd(x, y) > 1. In this case one cannot assume 5 does not divide
r so there is a second case where r = 5q2. Then (x, y, z) = (s, a/(5q), q2) is a solution to

y2 = x4 − 50x2z2 + 125z4.

This Diophantine equation also has no nontrivial integer solutions and the proof is nearly
identical to the proof of the Lemma above. This stronger result was (apparently) first
proven by Nils Bruin (1999). This result is at least tangentially related to Beal’s conjecture.

The more general solution is due to Richard Stong.
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USAMO 6. Consider 0 < λ < 1, and let A be a multiset of positive integers. Let An = {a ∈ A : a ≤ n}.
Assume that for every n ∈ N, the set An contains at most nλ numbers. Show that there
are infinitely many n ∈ N for which the sum of the elements in An is at most n(n+1)

2
λ.

(A multiset is a set-like collection of elements in which order is ignored, but repetition
of elements is allowed and multiplicity of elements is significant. For example, multisets
{1, 2, 3} and {2, 1, 3} are equivalent, but {1, 1, 2, 3} and {1, 2, 3} differ.)

Solution: Set bn = |An|, an = nλ − An ≥ 0. There are bi − bi−1 elements equal to i.
Therefore the sum of elements in An is

n∑
i=1

i(bi − bi−1) = nbn −
n∑

i=1

bi.

Now bn = nλ− an, so the sum of elements in An may be written as

Σn = λ
n(n+ 1)

2
− nan +

n−1∑
i=1

ai.

Assume, by way of contradiction, that for all n ≥ n0, the sum of elements in An is greater
than λn(n+1)

2
. Then

nan < an−1 + an−2 + . . .+ a1,

so

an <
an−1 + an−2 + . . .+ a1

n
≤ Mn · (n− 1)

n
(4)

where Mn = max{a1, a2, . . . , an−1}. We deduce that an <
(n−1)Mn

n
, so Mn+1 = Mn = M ,

where M = Mn0 .

Let {x} denote the fractional part of x; i.e., {x} = x−bxc. We note that {ak+1−ak} = λ,
so {(M − ak)− (M − ak+1)} = λ. We claim that

(M − ak) + (M − ak+1) ≥ min(λ, 1− λ). (5)

To see this, we first note that M − ak ≥ 0 and M − ak+1 ≥ 0. If either M − ak ≥ 1
or M − ak+1 ≥ 1, then we are done. Assume that 0 < M − ak,M − ak+1 < 1. Then
−1 < (M − ak)− (M − ak+1) < 1, so either (M − ak)− (M − ak+1) = λ− 1 or (M − ak)−
(M − ak+1) = λ. In the former case, we get M − ak+1 > 1− λ, and in the latter case we
get M − ak > λ. In either case, (5) follows.

We deduce from (5) that ak + ak+1 ≤ 2M − µ, where µ = min(λ, 1 − λ). From this and
(4), we see that

an ≤M − µ

2
(6)

for n ≥ n1 = n0 + 1.

Let δ = µ/3. We will use induction to prove that for any integer k ≥ 1 and n ≥ nk,

an ≤M − kδ. (7)
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We have already proved the base case. Assume that (7) is true for a given fixed k. Using
(6), we see that ak + ak+1 ≤ 2M − 2kδ − µ = 2M − (2k + 3)δ. (Note that δ ≤ 1/6, so
min(δ, 1− δ) = δ.) Now if we take n > (2k + 3)nk, we deduce that

an ≤
nkM + (n− nk)(M − (k + 3

2
)δ)

n
≤M − (k + 1)δ.

Statement (7) then follows by induction. However, it then follows that an < 0 when
k > M/δ, and this is a contradiction.

Copyright c© Committee on the American Mathematics Competitions,
Mathematical Association of America
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§0 Problems

1. Solve in integers the equation

x2 + xy + y2 =

(
x+ y

3
+ 1

)3

.

2. Quadrilateral APBQ is inscribed in circle ω with ∠P = ∠Q = 90◦ and AP =
AQ < BP . Let X be a variable point on segment PQ. Line AX meets ω again at
S (other than A). Point T lies on arc AQB of ω such that XT is perpendicular to
AX. Let M denote the midpoint of chord ST .

As X varies on segment PQ, show that M moves along a circle.

3. Let S = {1, 2, . . . , n}, where n ≥ 1. Each of the 2n subsets of S is to be colored red
or blue. (The subset itself is assigned a color and not its individual elements.) For
any set T ⊆ S, we then write f(T ) for the number of subsets of T that are blue.

Determine the number of colorings that satisfy the following condition: for any
subsets T1 and T2 of S,

f(T1)f(T2) = f(T1 ∪ T2)f(T1 ∩ T2).

4. Steve is piling m ≥ 1 indistinguishable stones on the squares of an n × n grid.
Each square can have an arbitrarily high pile of stones. After he finished piling
his stones in some manner, he can then perform stone moves, defined as follows.
Consider any four grid squares, which are corners of a rectangle, i.e. in positions
(i, k), (i, l), (j, k), (j, l) for some 1 ≤ i, j, k, l ≤ n, such that i < j and k < l. A stone
move consists of either removing one stone from each of (i, k) and (j, l) and moving
them to (i, l) and (j, k) respectively, or removing one stone from each of (i, l) and
(j, k) and moving them to (i, k) and (j, l) respectively.

Two ways of piling the stones are equivalent if they can be obtained from one
another by a sequence of stone moves. How many different non-equivalent ways
can Steve pile the stones on the grid?

5. Let a, b, c, d, e be distinct positive integers such that a4 + b4 = c4 + d4 = e5. Show
that ac+ bd is a composite number.

6. Consider 0 < λ < 1, and let A be a multiset of positive integers. Let An = {a ∈
A : a ≤ n}. Assume that for every n ∈ N, the multiset An contains at most nλ
numbers. Show that there are infinitely many n ∈ N for which the sum of the
elements in An is at most n(n+1)

2 λ.

2
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§1 USAMO 2015/1, proposed by Titu Andreescu

Solve in integers the equation

x2 + xy + y2 =

(
x+ y

3
+ 1

)3

.

We do the trick of setting a = x+ y and b = x− y. This rewrites the equation as

1

4

(
(a+ b)2 + (a+ b)(a− b) + (a− b)2

)
=
(a

3
+ 1
)3

where a, b ∈ Z have the same parity. This becomes

3a2 + b2 = 4
(a

3
+ 1
)3

which is enough to imply 3 | a, so let a = 3c. Miraculously, this becomes

b2 = (c− 2)2(4c+ 1).

So a solution must have 4c+ 1 = m2, with m odd. This gives

x =
1

8

(
3(m2 − 1)± (m3 − 9m)

)
and y =

1

8

(
3(m2 − 1)∓ (m3 − 9m)

)
.

For mod 8 reasons, this always generates a valid integer solution, so this is the complete
curve of solutions. Actually, putting m = 2n+ 1 gives the much nicer curve

x = n3 + 3n2 − 1 and y = −n3 + 3n+ 1

and permutations.
For n = 0, 1, 2, 3 this gives the first few solutions are (−1, 1), (3, 3), (19,−1), (53,−17),

(and permutations).
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§2 USAMO 2015/2, proposed by Zuming Feng

Quadrilateral APBQ is inscribed in circle ω with ∠P = ∠Q = 90◦ and AP = AQ < BP . Let X
be a variable point on segment PQ. Line AX meets ω again at S (other than A). Point T lies on
arc AQB of ω such that XT is perpendicular to AX. Let M denote the midpoint of chord ST .

As X varies on segment PQ, show that M moves along a circle.

We present three solutions, one by complex numbers, two more synthetic. (A fourth
solution using median formulas is also possible.) Most solutions will prove that the center
of the fixed circle is the midpoint of AO (with O the center of ω); this can be recovered
empirically by letting

• X approach P (giving the midpoint of BP )

• X approach Q (giving the point Q), and

• X at the midpoint of PQ (giving the midpoint of BQ)

which determines the circle; this circle then passes through P by symmetry and we can
find the center by taking the intersection of two perpendicular bisectors (which two?).

Complex solution (Evan Chen) Toss on the complex unit circle with a = −1, b = 1,
z = −1

2 . Let s and t be on the unit circle. We claim Z is the center.
It follows from standard formulas that

x =
1

2
(s+ t− 1 + s/t)

thus

4 Rex+ 2 = s+ t+
1

s
+

1

t
+
s

t
+
t

s

which depends only on P and Q, and not on X. Thus

4

∣∣∣∣z − s+ t

2

∣∣∣∣2 = |s+ t+ 1|2 = 3 + (4 Rex+ 2)

does not depend on X, done.

Homothety solution (Alex Whatley) Let G, N , O denote the centroid, nine-point
center, and circumcenter of triangle AST , respectively. Let Y denote the midpoint of
AS. Then the three points X, Y , M lie on the nine-point circle of triangle AST , which
is centered at N and has radius 1

2AO.

4
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A

B

S

T

O

XP Q

M

G
N

Y

Let R denote the radius of ω. Note that the nine-point circle of 4AST has radius
equal to 1

2R, and hence is independent of S and T . Then the power of A with respect to
the nine-point circle equals

AN2 −
(

1

2
R

)2

= AX ·AY =
1

2
AX ·AS =

1

2
AQ2

and hence

AN2 =

(
1

2
R

)2

+
1

2
AQ2

which does not depend on the choice of X. So N moves along a circle centered at A.
Since the points O, G, N are collinear on the Euler line of 4AST with

GO =
2

3
NO

it follows by homothety that G moves along a circle as well, whose center is situated
one-third of the way from A to O. Finally, since A, G, M are collinear with

AM =
3

2
AG

it follows that M moves along a circle centered at the midpoint of AO.

Power of a point solution (Zuming Feng, official solution) We complete the picture
by letting 4KYX be the orthic triangle of 4AST ; in that case line XY meets the ω
again at P and Q.

5
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A

B

S T

O

X

M

Y

K

P

Q

V

The main claim is:

Claim — Quadrilateral PQKM is cyclic.

Proof. To see this, we use power of a point: let V = QXY P ∩ SKMT . One approach is
that since (V K;ST ) = −1 we have V Q ·V P = V S ·V T = V K ·VM . A longer approach
is more elementary:

V Q · V P = V S · V T = V X · V Y = V K · VM

using the nine-point circle, and the circle with diameter ST .

But the circumcenter of PQKM , is the midpoint of AO, since it lies on the perpendicular
bisectors of KM and PQ. So it is fixed, the end.

6
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§3 USAMO 2015/3

Let S = {1, 2, . . . , n}, where n ≥ 1. Each of the 2n subsets of S is to be colored red or blue. (The
subset itself is assigned a color and not its individual elements.) For any set T ⊆ S, we then
write f(T ) for the number of subsets of T that are blue.

Determine the number of colorings that satisfy the following condition: for any subsets T1 and
T2 of S,

f(T1)f(T2) = f(T1 ∪ T2)f(T1 ∩ T2).

For an n-coloring C (by which we mean a coloring of the subsets of {1, . . . , n}), define
the support of C as

supp(C) = {T | f(T ) 6= 0} .

Call a coloring nontrivial if supp(C) 6= ∅ (equivalently, the coloring is not all red). In
that case, notice that

• the support is closed under unions and intersections: since if f(T1)f(T2) 6= 0 then
necessarily both f(T1 ∩ T2) and f(T1 ∪ T2) are nonzero; and

• the support is obviously upwards closed.

Thus, the support must take the form

supp(C) = [X,S]
def
= {T | X ⊆ T ⊆ S}

for some set X (for example by letting X be the minimal (by size) element of the support).
Say C has full support if X = ∅ (equivalently, ∅ is blue).

Lemma

For a given n and B ⊆ {1, . . . , n}, there is exactly one n-coloring with full support
in which the singletons colored blue are exactly those in B. Therefore there are
exactly 2n n-colorings with full support.

Proof. To see there is at least one coloring, color only the subsets of B blue. In that case

f(T ) = 2|T∩B|

which satisfies the condition by Inclusion-Exclusion. To see this extension is unique, note
that f({b}) is determined for each b and we can then determine f(T ) inductively on |T |;
hence there is at most one way to complete a coloring of the singletons, which completes
the proof.

For a general nontrivial n-coloring C, note that if supp(C) = [X,S], then we can think
of it as an (n−|X|)-coloring with full support. For |X| = k, there are

(
n
k

)
possible choices

of X ⊆ S. Adding back in the trivial coloring, the final answer is

1 +

n∑
k=0

(
n

k

)
2k = 1 + 3n .
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Remark. To be more explicit, the possible nontrivial colorings are exactly described by
specifying two sets X and Y with X ⊆ Y , and coloring blue only the sets T with X ⊆ T ⊆ Y .

In particular, one deduces that in a working coloring, f(T ) is always either zero or a
power of two. If one manages to notice this while working on the problem, it is quite helpful
for motivating the solution, as it leads one to suspect that the working colorings have good
structure.

8

http://web.evanchen.cc


USAMO 2015 Solution Notes web.evanchen.cc, updated April 17, 2020

§4 USAMO 2015/4

Steve is piling m ≥ 1 indistinguishable stones on the squares of an n× n grid. Each square can
have an arbitrarily high pile of stones. After he finished piling his stones in some manner, he can
then perform stone moves, defined as follows. Consider any four grid squares, which are corners
of a rectangle, i.e. in positions (i, k), (i, l), (j, k), (j, l) for some 1 ≤ i, j, k, l ≤ n, such that i < j
and k < l. A stone move consists of either removing one stone from each of (i, k) and (j, l) and
moving them to (i, l) and (j, k) respectively, or removing one stone from each of (i, l) and (j, k)
and moving them to (i, k) and (j, l) respectively.

Two ways of piling the stones are equivalent if they can be obtained from one another by a

sequence of stone moves. How many different non-equivalent ways can Steve pile the stones on

the grid?

The answer is
(
m+n−1
n−1

)2
. The main observation is that the multi-set of column counts,

and the multi-set of row counts, remains invariant. We call the pair (X,Y ) of multisets
the signature of the configuration.

We are far from done. This problem is a good test of mathematical maturity since the
following steps are then necessary:

1. Check that signatures are invariant around moves (trivial)

2. Check conversely that two configurations are equivalent if they have the same
signatures (the hard part of the problem), and

3. Show that each signature is realized by at least one configuration (not immediate,
but pretty easy).

Most procedures to the second step are algorithmic in nature, but Ankan Bhattacharya
gives the following far cleaner approach. Rather than having a grid of stones, we simply
consider the multiset of ordered pairs (x, y). Then, the signatures correspond to the
multisets of x and y coordinates, while a stone move corresponds to switching two
y-coordinates in different pairs, say.

Then, the second part is completed just because transpositions generate any permuta-
tion. To be explicit, given two sets of stones, we can permute the labels so that the first
set is (x1, y1), . . . , (xm, ym) and the second set of stones is (x1, y

′
1), . . . , (xm, y

′
m). Then

we just induce the correct permutation on (yi) to get (y′i).
The third part is obvious since given two multisets X = {x1, . . . , xm} and Y =
{y1, . . . , ym} we just put stones at (xi, yi) for i = 1, . . . ,m.

In that sense, the entire grid is a huge red herring!

9

http://web.evanchen.cc


USAMO 2015 Solution Notes web.evanchen.cc, updated April 17, 2020

§5 USAMO 2015/5, proposed by Mohsen Jamali

Let a, b, c, d, e be distinct positive integers such that a4 + b4 = c4 + d4 = e5. Show that ac+ bd

is a composite number.

Assume to the contrary that p = ac+ bd, so that

ac ≡ −bd (mod p)

=⇒ a4c4 ≡ b4d4 (mod p)

=⇒ a4(e5 − d4) ≡ (e5 − a4)d4 (mod p)

=⇒ a4e5 ≡ d4e5 (mod p)

=⇒ e5(a4 − d4) ≡ 0 (mod p)

and hence
p | e5(a− d)(a+ d)(a2 + d2).

Claim — We should have p > e.

Proof. We have e5 = a4 + b4 ≤ a5 + b5 < (ac+ bd)5 = p5.

Thus the above equation implies p ≤ max(a − d, a + d, a2 + d2) = a2 + d2. Similarly,
p ≤ b2 + c2. So

ac+ bd = p ≤ min
{
a2 + d2, b2 + c2

}
or by subtraction

0 ≤ min {a(a− c) + d(d− b), b(b− d) + c(c− a)} .

But since a4 + b4 = c4 + d4 the numbers a− c and d− b should have the same sign, and
so this is an obvious contradiction.
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§6 USAMO 2015/6

Consider 0 < λ < 1, and let A be a multiset of positive integers. Let An = {a ∈ A : a ≤ n}.
Assume that for every n ∈ N, the multiset An contains at most nλ numbers. Show that there are

infinitely many n ∈ N for which the sum of the elements in An is at most n(n+1)
2 λ.

For brevity, #S denotes |S|. Let xn = nλ−#An ≥ 0. We now proceed by contradiction
by assuming the conclusion fails for n large enough; that is,

n(n+ 1)

2
λ <

∑
a∈An

a

= 1(#A1 −#A0) + 2(#A2 −#A1) + · · ·+ n(#An −#An−1)

= n#An − (#A1 + · · ·+ #An−1)

= n(nλ− xn)− [(λ− x1) + (2λ− x2) + · · ·+ ((n− 1)λ− xn−1)]

=
n(n+ 1)

2
λ− nxn + (x1 + · · ·+ xn−1).

This means that for all sufficiently large n, we have

xn <
x1 + · · ·+ xn−1

n
∀n� 0.

Intuitively this means xn should become close to each other, since they are also nonnega-
tive.

Astonishingly, this intuition is false and (xn) need not converge; Zhao Ting-Wei showed
me that one can have a sequence which is zero “every so often” yet where the average
is nonzero. However, we have a second condition we haven’t used yet: the “integer”
condition implies

|xn+1 − xn| = |λ−#{n ∈ A}| > ε

for some fixed ε > 0, namely ε = min {λ, 1− λ}. Using the fact that consecutive terms
differ by some fixed ε, we will derive a contradiction.

Note that for some N0 and M , we have

xn < M ∀n > N0.

Hence for n > N0 we have xn + xn+1 < 2M − ε, and so for large enough n the average
must drop to just above M − 1

2ε. Thus for some large N1 > N0, we will have

xn < M − 1

3
ε ∀n > N1.

If we repeat this argument then with a large N2 > N1, we obtain

xn < M − 2

3
ε ∀n > N2

and so on and so forth. This is a clear contradiction.

Remark. Note that if A = {2, 2, 3, 4, 5, . . . } and λ = 1 then contradiction. So the condition
that 0 < λ < 1 cannot be dropped, and (by scaling) neither can the condition that A ⊆ Z.
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§0 Problems

1. Let X1, X2, . . . , X100 be a sequence of mutually distinct nonempty subsets of a set
S. Any two sets Xi and Xi+1 are disjoint and their union is not the whole set S,
that is, Xi ∩Xi+1 = ∅ and Xi ∪Xi+1 6= S, for all i ∈ {1, . . . , 99}. Find the smallest
possible number of elements in S.

2. Prove that for any positive integer k,

(k2)! ·
k−1∏
j=0

j!

(j + k)!

is an integer.

3. Let ABC be an acute triangle and let IB, IC , and O denote its B-excenter, C-
excenter, and circumcenter, respectively. Points E and Y are selected on AC such
that ∠ABY = ∠CBY and BE ⊥ AC. Similarly, points F and Z are selected on
AB such that ∠ACZ = ∠BCZ and CF ⊥ AB.

Lines IBF and ICE meet at P . Prove that PO and Y Z are perpendicular.

4. Find all functions f : R→ R such that for all real numbers x and y,

(f(x) + xy) · f(x− 3y) + (f(y) + xy) · f(3x− y) = (f(x+ y))2.

5. An equilateral pentagon AMNPQ is inscribed in triangle ABC such that M ∈ AB,
Q ∈ AC, and N,P ∈ BC. Let S be the intersection of MN and PQ. Denote by `
the angle bisector of ∠MSQ.

Prove that OI is parallel to `, where O is the circumcenter of triangle ABC, and I
is the incenter of triangle ABC.

6. Integers n and k are given, with n ≥ k ≥ 2. You play the following game against
an evil wizard. The wizard has 2n cards; for each i = 1, . . . , n, there are two cards
labeled i. Initially, the wizard places all cards face down in a row, in unknown
order. You may repeatedly make moves of the following form: you point to any k
of the cards. The wizard then turns those cards face up. If any two of the cards
match, the game is over and you win. Otherwise, you must look away, while the
wizard arbitrarily permutes the k chosen cards and then turns them back face-down.
Then, it is your turn again.

We say this game is winnable if there exist some positive integer m and some
strategy that is guaranteed to win in at most m moves, no matter how the wizard
responds. For which values of n and k is the game winnable?
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§1 USAMO 2016/1, proposed by Iurie Boreico

Let X1, X2, . . . , X100 be a sequence of mutually distinct nonempty subsets of a set S. Any two

sets Xi and Xi+1 are disjoint and their union is not the whole set S, that is, Xi ∩Xi+1 = ∅ and

Xi ∪Xi+1 6= S, for all i ∈ {1, . . . , 99}. Find the smallest possible number of elements in S.

Solution with Danielle Wang: the answer is that |S| ≥ 8.
Proof of sufficiency Since we must have 2|S| ≥ 100, we must have |S| ≥ 7.
To see that |S| = 8 is the minimum possible size, consider a chain on the set S =
{1, 2, . . . , 7} satisfying Xi ∩Xi+1 = ∅ and Xi ∪Xi+1 6= S. Because of these requirements
any subset of size 4 or more can only be neighbored by sets of size 2 or less, of which
there are

(
7
1

)
+
(
7
2

)
= 28 available. Thus, the chain can contain no more than 29 sets of

size 4 or more and no more than 28 sets of size 2 or less. Finally, since there are only(
7
3

)
= 35 sets of size 3 available, the total number of sets in such a chain can be at most

29 + 28 + 35 = 92 < 100.
Construction We will provide an inductive construction for a chain of subsets

X1, X2, . . . , X2n−1+1 of S = {1, . . . , n} satisfying Xi ∩Xi+1 = ∅ and Xi ∪Xi+1 6= S for
each n ≥ 4.

For S = {1, 2, 3, 4}, the following chain of length 23 + 1 = 9 will work:

34 1 23 4 12 3 14 2 13 .

Now, given a chain of subsets of {1, 2, . . . , n} the following procedure produces a chain of
subsets of {1, 2, . . . , n+ 1}:

1. take the original chain, delete any element, and make two copies of this chain,
which now has even length;

2. glue the two copies together, joined by ∅ in between; and then

3. insert the element n+ 1 into the sets in alternating positions of the chain starting
with the first.

For example, the first iteration of this construction gives:

345 1 235 4 125 3 145 2 5
34 15 23 45 12 35 14 25

It can be easily checked that if the original chain satisfies the requirements, then so does
the new chain, and if the original chain has length 2n−1 +1, then the new chain has length
2n + 1, as desired. This construction yields a chain of length 129 when S = {1, 2, . . . , 8}.
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Remark. Here is the construction for n = 8 in its full glory.

345678 1 235678 4 125678 3 145678 2 5678
34 15678 23 45678 12 35678 14 678
345 1678 235 4678 125 3678 145 2678 5

34678 15 23678 45 12678 35 78
3456 178 2356 478 1256 378 1456 278 56
3478 156 2378 456 1278 356 1478 6
34578 16 23578 46 12578 36 14578 26 578
346 1578 236 4578 126 8

34567 18 23567 48 12567 38 14567 28 567
348 1567 238 4567 128 3567 148 67
3458 167 2358 467 1258 367 1458 267 58
3467 158 2367 458 1267 358 7
34568 17 23568 47 12568 37 14568 27 568
347 1568 237 4568 127 3568 147 68
3457 168 2357 468 1257 368 1457 268 57
3468 157 2368 457 1268

4
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§2 USAMO 2016/2, proposed by Kiran Kedlaya

Prove that for any positive integer k,

(k2)! ·
k−1∏
j=0

j!

(j + k)!

is an integer.

We show the exponent of any given prime p is nonnegative in the expression. Recall
that the exponent of p in n! is equal to

∑
i≥1
⌊
n/pi

⌋
. In light of this, it suffices to show

that for any prime power q, we have⌊
k2

q

⌋
+
k−1∑
j=0

⌊
j

q

⌋
≥

k−1∑
j=0

⌊
j + k

q

⌋
Since both sides are integers, we show⌊

k2

q

⌋
+

k−1∑
j=0

⌊
j

q

⌋
> −1 +

k−1∑
j=0

⌊
j + k

q

⌋
.

If we denote by {x} the fractional part of x, then bxc = x− {x} so it’s equivalent to{
k2

q

}
+

k−1∑
j=0

{
j

q

}
< 1 +

k−1∑
j=0

{
j + k

q

}
.

However, the sum of remainders when 0, 1, . . . , k − 1 are taken modulo q is easily seen to
be less than the sum of remainders when k, k + 1, . . . , 2k − 1 are taken modulo q. So

k−1∑
j=0

{
j

q

}
≤

k−1∑
j=0

{
j + k

q

}

follows, and we are done upon noting
{
k2/q

}
< 1.
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§3 USAMO 2016/3, proposed by Evan Chen and Telv Cohl

Let ABC be an acute triangle and let IB, IC , and O denote its B-excenter, C-excenter, and
circumcenter, respectively. Points E and Y are selected on AC such that ∠ABY = ∠CBY
and BE ⊥ AC. Similarly, points F and Z are selected on AB such that ∠ACZ = ∠BCZ and
CF ⊥ AB.

Lines IBF and ICE meet at P . Prove that PO and Y Z are perpendicular.

We present two solutions.

First solution Let IA denote the A-excenter and I the incenter. Then let D denote the
foot of the altitude from A. Suppose the A-excircle is tangent to BC, AB, AC at A1,
B1, C1 and let A2, B2, C2 denote the reflections of IA across these points. Let S denote
the circumcenter of 4IIBIC .

A

B C

I O

E

F

IA

IB

IC

P

D A1

B1

C1

A2

B2

C2

S

YZ

We begin with the following observation:

Claim — Points D, I, A2 are collinear, as are points E, IC , C2 are collinear and
points F , IB, B2 are collinear.

Proof. This basically follows from the “midpoints of altitudes” lemma. To see D, I, A2

are collinear, recall first that IA1 passes through the midpoint M of AD.
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A

B C

I

IA

D A1

B1

C1

A2

M

Now since AD ‖ IAA2, and M and A1 are the midpoints of AD and IAA2, it follows
from the collinearity of A, I, IA that D, I, A2 are collinear as well.

The other two claims follow in a dual fashion. For example, using the homothety
taking the A to C-excircle, we find that C1IC bisects the altitude BE, and since IC , B,
IA are collinear the same argument now gives IC , E, C2 are collinear. The fact that IB,
F , B2 are collinear is symmetric.

Observe that B2C2 ‖ B1C1 ‖ IBIC . Proceeding similarly on the other sides, we discover
4IIBIC and 4A2B2C2 are homothetic. Hence P is the center of this homothety (in
particular, D, I, P , A2 are collinear). Moreover, P lies on the line joining IA to S, which
is the Euler line of 4IIBIC , so it passes through the nine-point center of 4IIBIC , which
is O. Consequently, P , O, IA are collinear as well.

To finish, we need only prove that OS ⊥ Y Z. In fact, we claim that Y Z is the radical
axis of the circumcircles of 4ABC and 4IIBIC . Actually, Y is the radical center of
these two circumcircles and the circle with diameter IIB (which passes through A and
C). Analogously Z is the radical center of the circumcircles and the circle with diameter
IIC , and the proof is complete.

Second solution (barycentric, outline, Colin Tang) we are going to use barycentric
coordinates to show that the line through O perpendicular to Y Z is concurrent with
IBF and ICE.

The displacement vector
−−→
Y Z is proportional to (a(b− c) : −b(a+ c) : c(a+ b)), and so

by strong perpendicularity criterion and doing a calculation gives the line

x(b− c)bc(a+ b+ c) + y(a+ c)ac(a+ b− c) + z(a+ b)ab(−a+ b− c) = 0.

On the other hand, line ICE has equation

0 = det

 a b −c
SC 0 SA
x y z

 = bSa · x+ (−cSC − aSA) · y + (−bSC) · z

and similarly for IBF . Consequently, concurrence of these lines is equivalent to

det

 bSA −cSC − aSA −bSC
cSA −cSB −aSA − bSB

(b− c)bc(a+ b+ c) (a+ c)ac(a+ b− c) (a+ b)ab(−a+ b− c)

 = 0
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which is a computation.

Authorship comments I was intrigued by a Taiwan TST problem which implied that,
in the configuration above, ∠IBDIC was bisected by DA. This motivated me to draw all
three properties above where IA and P were isogonal conjugates with respect to DEF .
After playing around with this picture for a long time, I finally noticed that O was on
line PIA. (So the original was to show that IBF , ICE, DA2 concurrent). Eventually I
finally noticed in the picture that PIA actually passed through the circumcenter of ABC
as well. This took me many hours to prove.

The final restatement (which follows quickly from P , O, IA collinear) was discovered
by Telv Cohl when I showed him the problem.
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§4 USAMO 2016/4, proposed by Titu Andreescu

Find all functions f : R→ R such that for all real numbers x and y,

(f(x) + xy) · f(x− 3y) + (f(y) + xy) · f(3x− y) = (f(x+ y))2.

We claim that the only two functions satisfying the requirements are f(x) ≡ 0 and
f(x) ≡ x2. These work.

First, taking x = y = 0 in the given yields f(0) = 0, and then taking x = 0 gives
f(y)f(−y) = f(y)2. So also f(−y)2 = f(y)f(−y), from which we conclude f is even.
Then taking x = −y gives

∀x ∈ R : f(x) = x2 or f(4x) = 0 (F)

for all x.
Now we claim

Claim — f(z) = 0 ⇐⇒ f(2z) = 0 (♠).

Proof. Let (x, y) = (3t, t) in the given to get(
f(t) + 3t2

)
f(8t) = f(4t)2.

Now if f(4t) 6= 0 (in particular, t 6= 0), then f(8t) 6= 0. Thus we have (♠) in the forwards
direction.

Then f(4t) 6= 0
(F)
=⇒ f(t) = t2 6= 0

(♠)
=⇒ f(2t) 6= 0 implies the reverse direction, the

last step being the forward direction (♠).

By putting together (F) and (♠) we finally get

∀x ∈ R : f(x) = x2 or f(x) = 0 (♥)

We are now ready to approach the main problem. Assume there’s an a 6= 0 for which
f(a) = 0; we show that f ≡ 0.

Let b ∈ R be given. Since f is even, we can assume without loss of generality that
a, b > 0. Also, note that f(x) ≥ 0 for all x by (♥). By using (♠) we can generate c > b
such that f(c) = 0 by taking c = 2na for a large enough integer n. Now, select x, y > 0
such that x− 3y = b and x+ y = c. That is,

(x, y) =

(
3c+ b

4
,
c− b

4

)
.

Substitution into the original equation gives

0 = (f(x) + xy) f(b) + (f(y) + xy) f(3x− y) = (f(x) + f(y) + 2xy) f(b)

Since f(x) + f(y) + 2xy > 0, if follows that f(b) = 0, as desired.
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§5 USAMO 2016/5, proposed by Ivan Borsenco

An equilateral pentagon AMNPQ is inscribed in triangle ABC such that M ∈ AB, Q ∈ AC,
and N,P ∈ BC. Let S be the intersection of MN and PQ. Denote by ` the angle bisector of
∠MSQ.

Prove that OI is parallel to `, where O is the circumcenter of triangle ABC, and I is the

incenter of triangle ABC.

First solution (complex) In fact, we only need AM = AQ = NP and MN = QP .
We use complex numbers with ABC the unit circle, assuming WLOG that A, B, C

are labeled counterclockwise. Let x, y, z be the complex numbers corresponding to the
arc midpoints of BC, CA, AB, respectively; thus x + y + z is the incenter of 4ABC.
Finally, let s > 0 be the side length of AM = AQ = NP .

Then, since MA = s and MA ⊥ OZ, it follows that

m− a = i · sz.

Similarly, p− n = i · sy and a− q = i · sx, so summing these up gives

i · s(x+ y + z) = (p− q) + (m− n) = (m− n)− (q − p).

Since MN = PQ, the argument of (m− n)− (q − p) is along the external angle bisector
of the angle formed, which is perpendicular to `. On the other hand, x+ y+ z is oriented
in the same direction as OI, as desired.

Second solution (trig, Danielle Wang) Let δ and ε denote ∠MNB and ∠CPQ. Also,
assume AMNPQ has side length 1.

In what follows, assume AB < AC. First, we note that

BN = (c− 1) cosB + cos δ,

CP = (b− 1) cosC + cos ε, and

a = 1 +BN + CP

from which it follows that

cos δ + cos ε = cosB + cosC − 1

Also, by the Law of Sines, we have c−1
sin δ = 1

sinB and similarly on triangle CPQ, and from
this we deduce

sin ε− sin δ = sinB − sinC.

The sum-to-product formulas

sin ε− sin δ = 2 cos

(
ε+ δ

2

)
sin

(
ε− δ

2

)
cos ε− cos δ = 2 cos

(
ε+ δ

2

)
cos

(
ε− δ

2

)
give us

tan

(
ε− δ

2

)
=

sin ε− sin δ

cos ε− cos δ
=

sinB − sinC

cosB + cosC − 1
.
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Now note that ` makes an angle of 1
2(π + ε − δ) with line BC. Moreover, if line OI

intersects line BC with angle ϕ then

tanϕ =
r −R cosA

1
2(b− c)

.

So in order to prove the result, we only need to check that

r −R cosA
1
2(b− c)

=
cosB + cosC + 1

sinB − sinC
.

Using the fact that b = 2R sinB, c = 2R sinC, this reduces to the fact that r/R+ 1 =
cosA+ cosB + cosC, which is the so-called Carnot theorem.
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§6 USAMO 2016/6, proposed by Gabriel Carroll

Integers n and k are given, with n ≥ k ≥ 2. You play the following game against an evil wizard.
The wizard has 2n cards; for each i = 1, . . . , n, there are two cards labeled i. Initially, the wizard
places all cards face down in a row, in unknown order. You may repeatedly make moves of the
following form: you point to any k of the cards. The wizard then turns those cards face up. If
any two of the cards match, the game is over and you win. Otherwise, you must look away, while
the wizard arbitrarily permutes the k chosen cards and then turns them back face-down. Then,
it is your turn again.

We say this game is winnable if there exist some positive integer m and some strategy that is

guaranteed to win in at most m moves, no matter how the wizard responds. For which values of

n and k is the game winnable?

The game is winnable if and only if k < n.
First, suppose 2 ≤ k < n. Query the cards in positions {1, . . . , k}, then {2, . . . , k + 1},

and so on, up to {2n− k + 1, 2n}. By taking the difference of any two adjacent queries,
we can deduce for certain the values on cards 1, 2, . . . , 2n− k. If k ≤ n, this is more than
n cards, so we can find a matching pair.

For k = n we remark the following: at each turn after the first, assuming one has
not won, there are n cards representing each of the n values exactly once, such that the
player has no information about the order of those n cards. We claim that consequently
the player cannot guarantee victory. Indeed, let S denote this set of n cards, and S the
other n cards. The player will never win by picking only cards in S or S. Also, if the
player selects some cards in S and some cards in S, then it is possible that the choice
of cards in S is exactly the complement of those selected from S; the strategy cannot
prevent this since the player has no information on S. This implies the result.
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46th United States of America Mathematical Olympiad

Day 1. 12:30 PM – 5:00 PM EDT

April 19, 2017

Note: For any geometry problem whose statement begins with an asterisk (∗), the first page of
the solution must be a large, in-scale, clearly labeled diagram. Failure to meet this requirement
will result in an automatic 1-point deduction.

USAMO 1. Prove that there are infinitely many distinct pairs (a, b) of relatively prime integers
a > 1 and b > 1 such that ab + ba is divisible by a + b.

USAMO 2. Let m1, . . . ,mn be a collection of n positive integers, not necessarily distinct. For
any sequence of integers A = (a1, . . . , an) and any permutation w = w1, . . . , wn of m1, . . . ,mn,
define an A-inversion of w to be a pair of entries wi, wj with i < j for which one of the following
conditions holds:

• ai ≥ wi > wj ,

• wj > ai ≥ wi, or

• wi > wj > ai.

Show that, for any two sequences of integers A = (a1, . . . , an) and B = (b1, . . . , bn), and for any
positive integer k, the number of permutations of m1, . . . ,mn having exactly k A-inversions is equal
to the number of permutations of m1, . . . ,mn having exactly k B-inversions.

USAMO 3. (∗) Let ABC be a scalene triangle with circumcircle Ω and incenter I. Ray AI meets
BC at D and meets Ω again at M ; the circle with diameter DM cuts Ω again at K. Lines MK and
BC meet at S, and N is the midpoint of IS. The circumcircles of 4KID and 4MAN intersect
at points L1 and L2. Prove that Ω passes through the midpoint of either IL1 or IL2.

c© 2017, Mathematical Association of America.



46th United States of America Mathematical Olympiad

Day 2. 12:30 PM – 5:00 PM EDT

April 20, 2017

Note: For any geometry problem whose statement begins with an asterisk (∗), the first page of
the solution must be a large, in-scale, clearly labeled diagram. Failure to meet this requirement
will result in an automatic 1-point deduction.

USAMO 4. Let P1, . . . , P2n be 2n distinct points on the unit circle x2 + y2 = 1 other than (1, 0).
Each point is colored either red or blue, with exactly n of them red and n of them blue. Let
R1, . . . , Rn be any ordering of the red points. Let B1 be the nearest blue point to R1 traveling
counterclockwise around the circle starting from R1. Then let B2 be the nearest of the remaining
blue points to R2 traveling counterclockwise around the circle from R2, and so on, until we have
labeled all of the blue points B1, . . . , Bn. Show that the number of counterclockwise arcs of the form
Ri → Bi that contain the point (1, 0) is independent of the way we chose the ordering R1, . . . , Rn

of the red points.

USAMO 5. Let Z denote the set of all integers. Find all real numbers c > 0 such that there exists
a labeling of the lattice points (x, y) ∈ Z2 with positive integers for which:

• only finitely many distinct labels occur, and

• for each label i, the distance between any two points labeled i is at least ci.

USAMO 6. Find the minimum possible value of

a

b3 + 4
+

b

c3 + 4
+

c

d3 + 4
+

d

a3 + 4
,

given that a, b, c, d are nonnegative real numbers such that a + b + c + d = 4.

c© 2017, Mathematical Association of America.



46th United States of America Mathematical Olympiad

Solutions

USAMO 1. (Proposed by Gregory Galperin)

Let n be an odd positive integer, and take a = 2n − 1, b = 2n + 1. Then ab + ba ≡ 1 + 3 ≡ 0
(mod 4), and ab + ba ≡ −1 + 1 ≡ 0 (mod n). Therefore a+ b = 4n divides ab + ba.

Alternate solution: Let p > 5 be a prime and let p 6≡ 1 (mod 5). For each such prime p we
construct a pair of relatively prime numbers (a, b) that satisfy the conclusion of the problem. Thus,
we will get infinitely many distinct pairs (a, b) as required.

Let a = 3p + 2, b = 7p − 2. Then a + b = 10p. We have ϕ(10p) = 4(p − 1) = b − a, where ϕ is
Euler’s function.

Obviously, a and b are odd and not divisible by p. They are not divisible by 5 because p 6≡ 1 (mod 5).
Thus, a and b are relatively prime to 10p = a+ b, and therefore relatively prime to each other.

Therefore, using Euler’s theorem,

ab = aa+ϕ(10p) = aa · aϕ(10p) ≡ aa (mod 10p) ,

and since 10p = a+ b,
ab + ba ≡ aa + ba (mod a+ b) .

However, since a is odd, aa + ba is divisible by a+ b. Hence, ab + ba is divisible by a+ b.

USAMO 2. (Proposed by Maria Monks Gillespie)

It suffices to show the result for B = (0, 0, . . . , 0), since then any sequence is equivalent to any other
sequence via B. We first show that the result holds for all sequences of the form A = (a, a, . . . , a)
for some a.

For each positive integer i define the ith lifting map Bi on the permutations of m1, . . . ,mn by
Bi(w1, . . . , wn) = v1, . . . , vn where vj = i if and only if wn+1−j = i, and where the subsequence of v
consisting of all entries not equal to i (taken in order) is equal to the subsequence of w consisting
of all entries not equal to i.

Lemma 1. Let Ai−1 = (i − 1, i − 1, . . . , i − 1) and Ai = (i, i, . . . , i). Then the number of Ai−1-
inversions of w equals the number of Ai-inversions of Bi(w). Moreover, Bi is a bijection on the
permutations of w, showing the result in this case.

Proof. It is easy to see that Bi is a bijection for any i, since we can reverse the map.

Now, note that any Ai−1-inversions between entries not equal to i in w are still Ai-inversions in
Bi(w), and vice-versa. Notice also that there are no Ai−1-inversions in w having i as the left entry.
Similarly there are no Ai-inversions having i as the right entry in Bi(w).

On the other hand, in w, any non-i entry to the left of an i forms an Ai−1-inversion with that i.
And in Bi(w), any non-i entry to the right of an i forms an Ai-inversion with that i. Since the

1



positions of the i’s are reversed from w to Bi(w), the number of inversions involving an i are equal
in each case, and the result follows.

For j > i, we denote Bi→j := Bj ◦ Bj−1 ◦ · · · ◦ Bi+2 ◦ Bi+1. Also, for j > i, we denote Bj→i :=
B−1i→j = B−1i+1 ◦B

−1
i+2 ◦ · · · ◦B

−1
j . And we let Bi→i be the identity permutation.

Additionally, for A = (a1, . . . , an) and for a permutation w of m1, . . . ,mn we define φA(w) as
follows. Let w(1) = B0→a1(w) and, inductively, for i > 1 let w(i) be the result of applying Bai−1→ai

to the last n − i + 1 terms of w(i−1) and leaving the first i − 1 terms unchanged. Finally let
φA(w) = w(n).

Lemma 2. The number of A-inversions of φA(w) is equal to the number of B-inversions of w
where B = (0, 0, . . . , 0).

Proof. This is a consequence of the definition of φA: At any step w(i) in the process of computing
φA(w), we consider the sequence A(i) formed by changing the last n− i+ 1 terms of the previous
sequence A(i−1) (starting at A(0) = (0, 0, . . . , 0)) from ai−1 to ai. Then we have A(n) = A, and at
each step the number of A(i)-inversions of w(i) is equal to the number of A(i−1)-inversions of w(i−1)

by Lemma 1. (More precisely, the lemma applies to the number of such inversions among the last
n− i+ 1 terms, but note that the number of inversions involving any of the first i− 1 terms is also
unchanged at each step.) The result follows.

And since φA is a bijection, being a composition of bijections, we are done.

USAMO 3. (Proposed by Evan Chen)
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A

B C

I

D

M

IA

X

K

S

N

W

E

L

T

Let W be the midpoint of BC, and let X be the point on Ω opposite M . Observe that line KD
passes through X, and thus lines BC, MK, XA concur at the orthocenter of 4DMX, which is S.
Denote by IA the A-excenter of ABC.

Next, let E be the foot of the altitude from I to XIA; observe that E lies on the circle ω centered
at M through I, B, C, IA. Then, S is the radical center of ω, Ω, and the circle with diameter IX;
hence line SI passes through E; accordingly I is the orthocenter of 4XSIA; denote by L the foot
of the altitude from X to IAS.

We claim that this L lies on both the circumcircle of4KID and4MAN . It lies on the circumcircle
of 4MAN since this circle is the nine-point circle of 4XSIA. For the other, note that 4MWI ∼
4MIX, since they share the same angle at M and MW ·MX = MB2 = MI2. Consequently,
∠IWM = ∠MIX = 180◦ − ∠LIM = 180◦ − ∠MLI, enough to imply that quadrilateral MWIL
is cyclic. But lines IL, DK, and WM meet at X, so Power of a Point in cyclic quadrilaterals
DKMW and MWIL gives XD ·XK = XM ·XW = XI ·XL, hence KDIL is cyclic as needed.

All that remains to show is that the midpoint T of IL lies on Ω. But this follows from the fact
that TM ‖ IAL =⇒ ∠MTX = 90◦, thus the problem is solved.

Alternate Solution (by Titu Andreescu and Cosmin Pohoata): We refer to the same figure as
in the first solution. Let X be the midpoint of arc BAC of Ω. A first key step in the problem is
to note that D is the orthocenter of triangle XSM . This follows from the fact that DK ⊥ KM ,
which implies that line DK must pass through the antipode of M in Ω, which is precisely the point
X. This together with the fact that MX ⊥ SW implies the claim.

3



Next, it is essential to notice that I is also the orthocenter of triangle XSIA, where IA denotes
the A-excenter of triangle ABC. This can be argued as follows: since D is the orthocenter of
4XSM , we have by Power of a Point that AX · AS = AD · AM (we are implicitly using the fact
that the reflection of D across line XS lies on the circumcircle of triangle XSM). However, the
4-tuple (A, I,D, IA) is a harmonic division and M is the midpoint of IIA, which easily implies that
AD · AM = AI · AIA. By Power of a Point once again, this yields that the reflection of I across
line XS lies on the circumcircle of triangle XSIA, so I must indeed be the orthocenter of triangle
XSIA. This is crucial, since then the circumcircle of triangle MAN is nothing but the nine-point
circle of 4XSIA, so the foot of altitude L from X on SIA becomes a good candidate for L1 or L2.

If T denotes the midpoint of segment IL, then TM is a midline in triangle ILIA, so TM ⊥ TX;
therefore T is on the circle of diameter MX, which is precisely Ω. It remains to show that L also
lies on the circumcircle of triangle KID, but this is clear: ASKD is cyclic, so XA ·XS = XD ·XK;
also, ASLI is cyclic, so XA · XS = XI · XL; hence XD · XK = XI · XL, which by Power of a
Point means that ILKD is cyclic, thus completing the proof.

USAMO 4. (Proposed by Maria Monks Gillespie)

We may assume the points have been labeled as P1, P2, . . . , P2n in order, going counterclockwise
from (1, 0). Now, write out the color of each point in order, and replace each R with a +1 and each
B with a −1, to get a list p1, . . . , p2n of +1’s and −1’s. Consider the partial sums p1 + · · ·+ pk of
this sequence, and choose the index k such that the kth partial sum has as small a value as possible;
if several partial sums are tied for smallest, let k be the lowest index among them. Now, rotate the
circle clockwise so that points P1, . . . , Pk are moved past (1, 0); the resulting sequence of +1’s and
−1’s from the new orientation now has all nonnegative partial sums, and the total sum is 0.

Consider any red point in the rotated diagram and label it R1. The arc R1 → B1 does not
cross (1, 0), for otherwise the sequence ends with a string of +1’s and the partial sums before
those +1’s would be negative. Furthermore, the sequence of entries from R1 to B1 looks like
+1,+1,+1, . . . ,+1,−1, and so removing R1 and B1 is equivalent to removing a consecutive pair
of a +1 and −1, so the partial sums remain all nonnegative. It follows that the next pairing also
doesn’t cross (1, 0), and so on, so no matter which way we pick the ordering of the red points in
the rotated circle, there are no counterclockwise arcs Ri → Bi containing (1, 0).

Finally, note that in any ordering of the red points, the blue points among P1, . . . , Pk are all paired
with red points, and those red points among P1, . . . , Pk are paired with blue points in this same
subsequence since there are no crossings in the rotated picture. Let m be the difference between
the number of blue and red points among P1, . . . , Pk. Then it follows that exactly m blue points in
P1, . . . , Pk were matched with red points from Pk+1, . . . , P2n. Therefore, when we rotate the circle
back to its original position, there are exactly m crossings, no matter which ordering we pick for
the red points. Since m is independent of the ordering, the proof is complete.

USAMO 5. (Proposed by Ricky Liu)

The answer is c <
√

2.
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First suppose c <
√

2. We can partition Z2 into two subsets

L1 = {(x, y) | x+ y is odd} and L′1 = {(x, y) | x+ y is even}.

Both L1 and L′1 are square lattices with unit length
√

2 (that is, they are similar to Z2 with a
scaling factor of

√
2). Hence we can similarly partition L′1 into two square lattices L2 and L′2 with

unit length
√

2
2
, then partition L′2 into two square lattices L3 and L′3 with unit length

√
2
3
, and so

forth. Hence for any N ≥ 1, Z2 can be partitioned into N + 1 square lattices L1, L2, . . . , LN , L
′
N

with unit lengths
√

2,
√

2
2
, . . . ,

√
2
N
,
√

2
N

, respectively.

Since
√
2
c > 1, there exists a positive integer N such that (

√
2
c )N+1 ≥

√
2, or equivalently, cN+1 ≤

√
2
N

. For i = 1, . . . , N , label all points in Li by i, and then label all points in L′N by N + 1. Any

two points in Li lie at least
√

2
i
> ci apart, while any two points in L′N lie at least

√
2
N ≥ cN+1

apart, so this is a valid labeling.

Suppose instead that c ≥
√

2. For a nonnegative integer m, define

Rm = {(x, y) | 1 ≤ x ≤ 2a, 1 ≤ y ≤ 2b} ⊆ Z2, where (a, b) =

{
(m2 ,

m
2 ) if m is even,

(m−12 , m+1
2 ) if m is odd.

We will show by induction that Rm does not have a valid labeling using only labels at most m,
which will prove that Z2 has no valid labeling. The case m = 0 is trivial.

Suppose m > 0 is odd and that Rm−1 does not have a valid labeling using only 1, . . . ,m − 1 (the
inductive hypothesis), but that Rm does have a valid labeling using only 1, . . . ,m. Consider this
labeling of Rm. Since Rm ⊇ Rm−1, some point (x0, y0) with y0 ≤ 2(m−1)/2 must be labeled m. But
then (x0, y0) lies directly below a translate R′ of Rm−1 inside Rm. The distance between (x0, y0)
and any point in R′ is at most√

(2
m−1

2 − 1)2 + (2
m−1

2 )2 <
√

2
m ≤ cm,

so no points in R′ can be labeled m. But by the inductive hypothesis, R′ has no valid labeling
using only 1, . . . ,m− 1, which is a contradiction.

Now suppose m > 0 is even and that Rm−1 does not have a valid labeling using only 1, . . . ,m −
1 (the inductive hypothesis), but Rm does have a valid labeling using only 1, . . . ,m. By the
inductive hypothesis, some point (x0, y0) with 1

4 · 2
m/2 < y0 ≤ 3

4 · 2
m/2 must be labeled m (since

the corresponding rows of Rm form a rotated copy of Rm−1). But then (x0, y0) lies either directly
to the left or to the right of a translate R′ of Rm−1 inside Rm. The distance between (x0, y0) and
any point of R′ is less than√

(34 · 2
m
2 )2 + (2

m−2
2 )2 =

√
13
4 ·
√

2
m
<
√

2
m ≤ cm,

so no points in R′ can be labeled m. But by the inductive hypothesis, R′ has no valid labeling
using only 1, . . . ,m− 1, which is a contradiction. This completes the proof.
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USAMO 6. (Proposed by Titu Andreescu)

We will show that the minimum is 2
3 . (In particular, the value 4

5 , obtained by making the natural
guess a = b = c = d = 1, is not the right answer.)

We have
4a

b3 + 4
= a− ab3

b3 + 4
≥ a− ab

3
,

since

b3 + 4 =
b3

2
+
b3

2
+ 4 ≥ 3b2,

by the Arithmetic Mean-Geometric Mean Inequality.

Then

a

b3 + 4
+

b

c3 + 4
+

c

d3 + 4
+

d

a3 + 4
≥ a+ b+ c+ d

4
− ab+ bc+ cd+ da

12
.

But a+ b+ c+ d = 4 and

4(ab+ bc+ cd+ da) = 4(a+ c)(b+ d) ≤ (a+ b+ c+ d)2 = 16.

Hence

a

b3 + 4
+

b

c3 + 4
+

c

d3 + 4
+

d

a3 + 4
≥ 1− 4

12
=

2

3
.

The minimum is realized when, for example, a = b = 2 and c = d = 0.

Problems and solutions c© 2017, Mathematical Association of America.
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USAMO 2017 Solution Notes web.evanchen.cc, updated April 17, 2020

§0 Problems

1. Prove that there exist infinitely many pairs of relatively prime positive integers
a, b > 1 for which a+ b divides ab + ba.

2. Let m1, m2, . . . , mn be a collection of n positive integers, not necessarily distinct.
For any sequence of integers A = (a1, . . . , an) and any permutation w = w1, . . . , wn
of m1, . . . ,mn, define an A-inversion of w to be a pair of entries wi, wj with i < j
for which one of the following conditions holds:

• ai ≥ wi > wj ,

• wj > ai ≥ wi, or

• wi > wj > ai.

Show that, for any two sequences of integers A = (a1, . . . , an) and B = (b1, . . . , bn),
and for any positive integer k, the number of permutations of m1, . . . ,mn having
exactly k A-inversions is equal to the number of permutations of m1, . . . ,mn having
exactly k B-inversions.

3. Let ABC be a scalene triangle with circumcircle Ω and incenter I. Ray AI meets
BC at D and Ω again at M ; the circle with diameter DM cuts Ω again at K.
Lines MK and BC meet at S, and N is the midpoint of IS. The circumcircles of
4KID and 4MAN intersect at points L1 and L2. Prove that Ω passes through
the midpoint of either IL1 or IL2.

4. Let P1, P2, . . . , P2n be 2n distinct points on the unit circle x2 + y2 = 1, other
than (1, 0). Each point is colored either red or blue, with exactly n red points and
n blue points. Let R1, R2, . . . , Rn be any ordering of the red points. Let B1 be
the nearest blue point to R1 traveling counterclockwise around the circle starting
from R1. Then let B2 be the nearest of the remaining blue points to R2 travelling
counterclockwise around the circle from R2, and so on, until we have labeled all of
the blue points B1, . . . , Bn. Show that the number of counterclockwise arcs of the
form Ri → Bi that contain the point (1, 0) is independent of the way we chose the
ordering R1, . . . , Rn of the red points.

5. Find all real numbers c > 0 such that there exists a labeling of the lattice points in
Z2 with positive integers for which:

• only finitely many distinct labels occur, and

• for each label i, the distance between any two points labeled i is at least ci.

6. Find the minimum possible value of

a

b3 + 4
+

b

c3 + 4
+

c

d3 + 4
+

d

a3 + 4

given that a, b, c, d are nonnegative real numbers such that a+ b+ c+ d = 4.
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§1 USAMO 2017/1, proposed by Gregory Galperin

Prove that there exist infinitely many pairs of relatively prime positive integers a, b > 1 for which

a+ b divides ab + ba.

One construction: let d ≡ 1 (mod 4), d > 1. Let x = dd+2d

d+2 . Then set

a =
x+ d

2
, b =

x− d
2

.

To see this works, first check that b is odd and a is even. Let d = a− b be odd. Then:

a+ b | ab + ba ⇐⇒ (−b)b + ba ≡ 0 (mod a+ b)

⇐⇒ ba−b ≡ 1 (mod a+ b)

⇐⇒ bd ≡ 1 (mod d+ 2b)

⇐⇒ (−2)d ≡ dd (mod d+ 2b)

⇐⇒ d+ 2b | dd + 2d.

So it would be enough that

d+ 2b =
dd + 2d

d+ 2
=⇒ b =

1

2

(
dd + 2d

d+ 2
− d
)

which is what we constructed. Also, since gcd(x, d) = 1 it follows gcd(a, b) = gcd(d, b) = 1.

Remark. Ryan Kim points out that in fact, (a, b) = (2n− 1, 2n+ 1) is always a solution.

3
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§2 USAMO 2017/2, proposed by Maria Monks

Let m1, m2, . . . , mn be a collection of n positive integers, not necessarily distinct. For any
sequence of integers A = (a1, . . . , an) and any permutation w = w1, . . . , wn of m1, . . . ,mn, define
an A-inversion of w to be a pair of entries wi, wj with i < j for which one of the following
conditions holds:

• ai ≥ wi > wj ,

• wj > ai ≥ wi, or

• wi > wj > ai.

Show that, for any two sequences of integers A = (a1, . . . , an) and B = (b1, . . . , bn), and for any

positive integer k, the number of permutations of m1, . . . ,mn having exactly k A-inversions is

equal to the number of permutations of m1, . . . ,mn having exactly k B-inversions.

The following solution was posted by Michael Ren, and I think it is the most natural
one (since it captures all the combinatorial ideas using a q-generating function that is
easier to think about, and thus makes the problem essentially a long computation).

Denote by M our multiset of n positive integers. Define an inversion of a permutation to
be pair i < j with wi < wj (which is a (0, . . . , 0)-inversion in the problem statement); this
is the usual definition (see https://en.wikipedia.org/wiki/Inversion_(discrete_

mathematics)). So we want to show the number of A-inversions is equal to the number
of usual inversions. In what follows we count permutations on M with multiplicity: so
M = {1, 1, 2} still has 3! = 6 permutations.

We are going to do what is essentially recursion, but using generating functions in
a variable q to do our book-keeping. (Motivation: there’s no good closed form for the
number of inversions, but there’s a great generating function known — which is even
better for us, since we’re only trying to show two numbers are equal!) First, we prove
two claims.

Claim — For any positive integer n, the generating function for the number of
permutations of (1, 2, . . . , n) with exactly k inversions is

n!q
def
= 1 · (1 + q) · (1 + q + q2) · . . . (1 + q + · · ·+ qn−1).

Here we mean that the coefficient of qs above gives the number of permutations with
exactly s inversions.

Proof. This is an induction on n, with n = 1 being trivial. Suppose we choose the first
element to be i, with 1 ≤ i ≤ n. Then there will always be exactly i − 1 inversions
using the first element, so this contributes qi · (n− 1)!q. Summing 1 ≤ i ≤ n gives the
result.

Unfortunately, the main difficulty of the problem is that there are repeated elements,
which makes our notation much more horrific.

Let us define the following. We take our given multiset M of n positive integers, we
suppose the distinct numbers are θ1 < θ2 < · · · < θm. We let ei be the number of times
θi appears. Therefore the multiplicities ei should have sums

e1 + · · ·+ em = n

4

http://web.evanchen.cc
https://en.wikipedia.org/wiki/Inversion_(discrete_mathematics)
https://en.wikipedia.org/wiki/Inversion_(discrete_mathematics)


USAMO 2017 Solution Notes web.evanchen.cc, updated April 17, 2020

and m denotes the number of distinct elements. Finally, we let

F (e1, . . . , em) =
∑

permutations σ

qnumber inversions of σ

be the associated generating function for the number of inversions. For example, the first
claim we proved says that F (1, . . . , 1) = n!q.

Claim — We have the explicit formula

F (e1, . . . , em) = n!q ·
m∏
i=1

ei!

ei!q
.

Proof. First suppose we perturb all the elements slightly, so that they are no longer equal.
Then the generating function would just be n!q.

Then, we undo the perturbations for each group, one at a time, and claim that we get
the above ei!q factor each time. Indeed, put the permutations into classes of e1! each
where permutations in the same classes differ only in the order of the perturbed θ1’s
(with the other n−e1 elements being fixed). Then there is a factor of e1!q from each class,
owing to the slightly perturbed inversions we added within each class. So we remove that
factor and add e1! · q0 instead. This accounts for the first term of the product.

Repeating this now with each term of the product implies the claim.

Thus we have the formula for the number of inversions in general. We wish to show
this also equals the generating function the number of A-inversions, for any fixed choice
of A. This will be an induction by n, with the base case being immediate.

For the inductive step, fix A, and assume the first element satisfies θk ≤ a1 < θk+1 (so
0 ≤ k ≤ m; we for convenience set θ0 = −∞ and θm = +∞). We count the permutations
based on what the first element θi of the permutation is. Then:

• Consider permutations starting with θi ∈ {θ1, . . . , θk}. Then the number of inver-
sions which will use this first term is (e1 + · · ·+ei−1)+(ek+1 + · · ·+em). Also, there
are ei ways to pick which θi gets used as the first term. So we get a contribution of

qe1+···+ei−1+(ek+1+···+em) · ei · F (e1, . . . , ei − 1, . . . , em)

in this case (with inductive hypothesis to get the last F -term).

• Now suppose θi ∈ {θk+1, . . . , θm}. Then the number of inversions which will use
this first term is ek+1 + · · ·+ ei−1. Thus by a similar argument the contribution is

qek+1+···+ei−1 · ei · F (e1, . . . , ei − 1, . . . , em).

Therefore, to complete the problem it suffices to prove

k∑
i=1

q(e1+···+ei−1)+(ek+1+···+em) · ei · F (e1, . . . , ei − 1, . . . , em)

+
m∑

i=k+1

qek+1+···+ei−1 · ei · F (e1, . . . , ei − 1, . . . , em)

= F (e1, . . . , em).

5
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Now, we see that

ei · F (e1, . . . , ei − 1, . . . , em)

F (e1, . . . , em)
=

1 + · · ·+ qei−1

1 + q + · · ·+ qn−1
=

1− qei
1− qn

so it’s equivalent to show

1− qn = qek+1+···+em
k∑
i=1

qe1+···+ei−1(1− qei) +
m∑

i=k+1

qek+1+···+ei−1(1− qei)

which is clear, since the left summand telescopes to qek+1+···+em − qn and the right
summand telescopes to 1− qek+1+···+em .

Remark. Technically, we could have skipped straight to the induction, without proving the
first two claims. However I think the solution reads more naturally this way.
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§3 USAMO 2017/3, proposed by Evan Chen

Let ABC be a scalene triangle with circumcircle Ω and incenter I. Ray AI meets BC at D and

Ω again at M ; the circle with diameter DM cuts Ω again at K. Lines MK and BC meet at S,

and N is the midpoint of IS. The circumcircles of 4KID and 4MAN intersect at points L1

and L2. Prove that Ω passes through the midpoint of either IL1 or IL2.

Let W be the midpoint of BC, let X be the point on Ω opposite M . Observe that KD
passes through X, and thus lines BC, MK, XA concur at the orthocenter of 4DMX,
which we call S. Denote by IA the A-excenter of ABC.

Next, let E be the foot of the altitude from I to XIA; observe that E lies on the
circle centered at M through I, B, C, IA. Then, S is the radical center of Ω and the
circles with diameter IX and IIA; hence line SI passes through E; accordingly I is the
orthocenter of 4XSIA; denote by L the foot from X to SIA.

A

B C

I

D

M

IA

X

K

S

N

W

E

L

T

We claim that this L lies on both the circumcircle of 4KID and 4MAN . It lies on
the circumcircle of 4MAN since this circle is the nine-point circle of 4XSIA. Also,
XD ·XK = XW ·XM = XA ·XS = XI ·XL, so KDIL are concyclic.

All that remains to show is that the midpoint T of IL lies on Ω. But this follows from
the fact that TM ‖ LIA =⇒ ∠MTX = 90◦, thus the problem is solved.

Remark. Some additional facts about this picture: the point T is the contact point of the
A-mixtilinear incircle (since it is collinear with X and I), while the point K is such that
AK is an A-symmedian (since KD and AD bisect ∠A and ∠K, say).
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IA

IB ICA

B

C

XS

I

L

D

M

K

N

T

Remark. In fact, the point L is the Miquel point of cyclic quadrilateral IBICBC (inscribed
in the circle with diameter IBIC). This implies many of the properties that L has above. For
example, it directly implies that L lies on the circumcircles of triangles IAIBIC and BCIA,
and that the point L lies on SIA (since S = BC ∩ IBIC). For this reason, many students
found it easier to think about the problem in terms of 4IAIBIC rather than 4ABC.
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§4 USAMO 2017/4, proposed by Maria Monks

Let P1, P2, . . . , P2n be 2n distinct points on the unit circle x2 + y2 = 1, other than (1, 0). Each

point is colored either red or blue, with exactly n red points and n blue points. Let R1, R2,

. . . , Rn be any ordering of the red points. Let B1 be the nearest blue point to R1 traveling

counterclockwise around the circle starting from R1. Then let B2 be the nearest of the remaining

blue points to R2 travelling counterclockwise around the circle from R2, and so on, until we have

labeled all of the blue points B1, . . . , Bn. Show that the number of counterclockwise arcs of the

form Ri → Bi that contain the point (1, 0) is independent of the way we chose the ordering R1,

. . . , Rn of the red points.

We present two solutions, one based on swapping and one based on an invariant.

First “local” solution by swapping two points Let 1 ≤ i < n be any index and consider
the two red points Ri and Ri+1. There are two blue points Bi and Bi+1 associated with
them.

Claim — If we swap the locations of points Ri and Ri+1 then the new arcs Ri → Bi
and Ri+1 → Bi+1 will cover the same points.

Proof. Delete all the points R1, . . . , Ri−1 and B1, . . . , Bi−1; instead focus on the positions
of Ri and Ri+1.

The two blue points can then be located in three possible ways: either 0, 1, or 2 of
them lie on the arc Ri → Ri+1. For each of the cases below, we illustrate on the left the
locations of Bi and Bi+1 and the corresponding arcs in green; then on the right we show
the modified picture where Ri and Ri+1 have swapped. (Note that by hypothesis there
are no other blue points in the green arcs).

RiRi+1

BiBi+1

Ri+1Ri

BiBi+1

RiRi+1

Bi

Bi+1

Ri+1Ri

Bi

Bi+1

RiRi+1

Bi Bi+1

Ri+1Ri

Bi Bi+1

Case 1

Case 2

Case 3

Observe that in all cases, the number of arcs covering any given point on the circumference
is not changed. Consequently, this proves the claim.
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Finally, it is enough to recall that any permutation of the red points can be achieved
by swapping consecutive points (put another way: (i i+ 1) generates the permutation
group Sn). This solves the problem.

Remark. This proof does not work if one tries to swap Ri and Rj if |i−j| 6= 1. For example
if we swapped Ri and Ri+2 then there are some issues caused by the possible presence of
the blue point Bi+1 in the green arc Ri+2 → Bi+2.

Second longer solution using an invariant Visually, if we draw all the segments Ri →
Bi then we obtain a set of n chords. Say a chord is inverted if satisfies the problem
condition, and stable otherwise. The problem contends that the number of stable/inverted
chords depends only on the layout of the points and not on the choice of chords.

(1, 0)

−1

0−1

0

+1

0 −1

+1

In fact we’ll describe the number of inverted chords explicitly. Starting from (1, 0) we
keep a running tally of R−B; in other words we start the counter at 0 and decrement
by 1 at each blue point and increment by 1 at each red point. Let x ≤ 0 be the lowest
number ever recorded. Then:

Claim — The number of inverted chords is −x (and hence independent of the
choice of chords).

This is by induction on n. I think the easiest thing is to delete chord R1B1; note that
the arc cut out by this chord contains no blue points. So if the chord was stable certainly
no change to x. On the other hand, if the chord is inverted, then in particular the last
point before (1, 0) was red, and so x < 0. In this situation one sees that deleting the
chord changes x to x+ 1, as desired.

10

http://web.evanchen.cc


USAMO 2017 Solution Notes web.evanchen.cc, updated April 17, 2020

§5 USAMO 2017/5, proposed by Ricky Liu

Find all real numbers c > 0 such that there exists a labeling of the lattice points in Z2 with
positive integers for which:

• only finitely many distinct labels occur, and

• for each label i, the distance between any two points labeled i is at least ci.

The answer is c <
√

2. Here is a solution with Calvin Deng.
The construction for any c <

√
2 can be done as follows. Checkerboard color the

lattice points and label the black ones with 1. The white points then form a copy of
Z2 again scaled up by

√
2 so we can repeat the procedure with 2 on half the resulting

points. Continue this dyadic construction until a large N for which cN < 2
1
2
(N−1), at

which point we can just label all the points with N .
I’ll now prove that c =

√
2 (and hence c ≥

√
2) can’t be done.

Claim — It is impossible to fill a 2n × 2n square with labels not exceeding 2n.

The case n = 1 is clear. So now assume it’s true up to n−1; and assume for contradiction
a 2n × 2n square S only contains labels up to 2n. (Of course every 2n−1 × 2n−1 square
contains an instance of a label at least 2n− 1.)

A

B

2 1 2 1

1 5 1 3

2 1 2 1

1 3 1 4

6

Now, we contend there are fewer than four copies of 2n:

Lemma

In a unit square, among any four points, two of these points have distance ≤ 1 apart.

Proof. Look at the four rays emanating from the origin and note that two of them have
included angle ≤ 90◦.

So WLOG the northwest quadrant has no 2n’s. Take a 2n− 1 in the northwest and
draw a square of size 2n−1 × 2n−1 directly right of it (with its top edge coinciding with
the top of S). Then A can’t contain 2n− 1, so it must contain a 2n label; that 2n label
must be in the northeast quadrant.
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Then we define a square B of size 2n−1 × 2n−1 as follows. If 2n− 1 is at least as high
2n, let B be a 2n−1 × 2n−1 square which touches 2n− 1 north and is bounded east by
2n. Otherwise let B be the square that touches 2n− 1 west and is bounded north by 2n.
We then observe B can neither have 2n− 1 nor 2n in it, contradiction.

Remark. To my knowledge, essentially all density arguments fail because of hexagonal
lattice packing.
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§6 USAMO 2017/6, proposed by Titu Andreescu

Find the minimum possible value of

a

b3 + 4
+

b

c3 + 4
+

c

d3 + 4
+

d

a3 + 4

given that a, b, c, d are nonnegative real numbers such that a+ b+ c+ d = 4.

The minimum 2
3 is achieved at (a, b, c, d) = (2, 2, 0, 0) and cyclic permutations.

The problem is an application of the tangent line trick: we observe the miraculous
identity

1

b3 + 4
≥ 1

4
− b

12

since 12− (3− b)(b3 + 4) = b(b+ 1)(b− 2)2 ≥ 0. Moreover,

ab+ bc+ cd+ da = (a+ c)(b+ d) ≤
(

(a+ c) + (b+ d)

2

)2

= 4.

Thus ∑
cyc

a

b3 + 4
≥ a+ b+ c+ d

4
− ab+ bc+ cd+ da

12
≥ 1− 1

3
=

2

3
.

Remark. The main interesting bit is the equality at (a, b, c, d) = (2, 2, 0, 0). This is the
main motivation for trying tangent line trick, since a lower bound of the form

∑
a(1− λb)

preserves the unusual equality case above. Thus one takes the tangent at b = 2 which
miraculously passes through the point (0, 1/4) as well.
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47th United States of America Mathematical Olympiad

Day 1. 12:30 PM – 5:00 PM EDT

April 18, 2018

Note: For any geometry problem whose statement begins with an asterisk (∗), the first page of
the solution must be a large, in-scale, clearly labeled diagram. Failure to meet this requirement
will result in an automatic 1-point deduction.

USAMO 1. Let a, b, c be positive real numbers such that a + b + c = 4 3
√
abc. Prove that

2(ab + bc + ca) + 4 min(a2, b2, c2) ≥ a2 + b2 + c2.

USAMO 2. Find all functions f : (0,∞)→ (0,∞) such that

f

(
x +

1

y

)
+ f

(
y +

1

z

)
+ f

(
z +

1

x

)
= 1

for all x, y, z > 0 with xyz = 1.

USAMO 3. For a given integer n ≥ 2, let {a1, a2, . . . , am} be the set of positive integers less than
n that are relatively prime to n. Prove that if every prime that divides m also divides n, then
ak1 + ak2 + · · ·+ akm is divisible by m for every positive integer k.

c© 2018, Mathematical Association of America.



47th United States of America Mathematical Olympiad

Day 2. 12:30 PM – 5:00 PM EDT

April 19, 2018

Note: For any geometry problem whose statement begins with an asterisk (∗), the first page of
the solution must be a large, in-scale, clearly labeled diagram. Failure to meet this requirement
will result in an automatic 1-point deduction.

USAMO 4. Let p be a prime, and let a1, a2, . . . , ap be integers. Show that there exists an integer
k such that the numbers

a1 + k, a2 + 2k, . . . , ap + pk

produce at least 1
2p distinct remainders upon division by p.

USAMO 5. (∗) In convex cyclic quadrilateral ABCD, we know that lines AC and BD intersect
at E, lines AB and CD intersect at F , and lines BC and DA intersect at G. Suppose that
the circumcircle of 4ABE intersects line CB at B and P , and that the circumcircle of 4ADE
intersects line CD at D and Q, where C,B, P,G and C,Q,D, F are collinear in this order. Prove
that if lines FP and GQ intersect at M , then ∠MAC = 90◦.

USAMO 6. Let an be the number of permutations (x1, x2, . . . , xn) of the numbers (1, 2, . . . , n)
such that the n ratios xk

k for 1 ≤ k ≤ n are all distinct. Prove that an is odd for all n ≥ 1.

c© 2018, Mathematical Association of America.
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USAMO 1.

First solution. Assume without loss of generality that c = min(a, b, c). By the AM-GM inequality
and the given condition, we have

4c(a+ b+ c) + 4ab ≥ 2
√

16 · abc(a+ b+ c)

= 2

√
16

(
a+ b+ c

4

)3

(a+ b+ c)

= (a+ b+ c)2.

Subtracting 2(ab+ bc+ ca) from both sides, this gives

2(ab+ bc+ ca) + 4c2 ≥ a2 + b2 + c2,

as desired.

Remark. The equality in the AM-GM step occurs if and only if c(a + b + c) = ab. Solving for
a+ b+ c and substituting into the condition a+ b+ c = 4 3

√
abc, this implies 8c2 = ab. Substituting

this back into the equation c(a+ b+ c) = ab, we conclude that

c(a+ b+ c) = 8c2 =⇒ a+ b = 7c.

We then have
a− b = ±

√
(a+ b)2 − 4ab = ±

√
49c2 − 32c2 = ±

√
17c.

It follows that {2a, 2b} = {(7−
√

17)c, (7 +
√

17)c}. Hence, equality holds if and only if (a, b, c) is
a permutation of (

(7−
√

17)r, (7 +
√

17)r, 2r
)

for some positive real number r.

Second solution. Suppose, as above, that c = min(a, b, c), and write A = a/c, B = b/c, and
D = A+B. The given condition becomes A+B+ 1 = 4 3

√
AB, or equivalently, AB = (D+ 1)3/64.

In terms of A and B, the problem asks us to prove that

2(AB +A+B) + 4 ≥ A2 +B2 + 1,

which can be rearranged as

2(A+B) + 3− (A+B)2 + 4AB ≥ 0.

After substituting in D, this inequality becomes

2D + 3−D2 + (D + 1)3/16 ≥ 0.
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Since the left-hand side factors as (D + 1)(D − 7)2/16, the inequality always holds.

Third solution: Assuming that c = min(a, b, c) and by adding 2(ab+ bc+ ca) to both sides, our
inequality becomes

4c(a+ b+ c) + 4ab ≥ (a+ b+ c)2.

Since both the given condition and the desired claim are homogeneous, we may assume without
loss of generality that a+ b+ c = 8, so our task is to prove that if ab = 8/c, then 32c+ 4ab ≥ 64.
This clearly holds, since for any positive real number c we have 32

(
c+ 1

c

)
≥ 64.

USAMO 2.

For any u, v, w ∈ (0, 1) satisfying u+ v + w = 1, we may set x = u
v , y = v

w , and z = w
u to obtain

f

(
u+ v

w

)
+ f

(
v + w

u

)
+ f

(
w + u

v

)
= 1,

and thus

f

(
1

w
− 1

)
+ f

(
1

u
− 1

)
+ f

(
1

v
− 1

)
= 1.

First, let g : (0, 1)→ (0,∞) be given by g(x) = f
(
1
x − 1

)
, so that the above equation reads

g(u) + g(v) + g(w) = 1 for all u, v, w ∈ (0, 1) with u+ v + w = 1.

Note that this condition implies actually g(x) < 1 for all x.

Next, consider the function h : (−1/3, 2/3)→ (−1/3, 2/3) given by h(x) = g(x+ 1/3)− 1/3. Then,
we have for all x, y, z ∈ (−1/3, 2/3) with x+ y + z = 0 that

h(x) + h(y) + h(z) = 0. (1)

We now establish the key properties of h in a series of claims.

Claim 1. We have h(0) = 0 and for all x ∈ (−1/3, 1/3), we have h(−x) = −h(x).

Proof. Setting x = y = z = 0 in (1) gives h(0) = 0. Then, setting z = 0 and y = −x yields
h(−x) = −h(x), as long as x ∈ (−1/3, 1/3).

Claim 2. For all x, y ∈ (0, 2/3) with x+ y < 2/3, we have h(x+ y) = h(x) + h(y).

Proof. In the case where x, y < 1/3, we immediately have from Claim 1 and (1) that

h(x) + h(y) = −h(−x)− h(−y) = h(x+ y).

This allows us to deduce the same property for all x and y satisfying the specified conditions.
Indeed, we have

h(x+ y) = h

(
x+ y

2

)
+ h

(
x+ y

2

)
= 2h

(x
2

)
+ 2h

(y
2

)
= h(x) + h(y),

where we have used the fact that x+ y < 2/3 implies x/2, y/2, (x+ y)/2 are all less than 1/3.
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Claim 3. For all x ∈ (−1/3, 2/3), we have h(x) = 3h(1/3)x.

Proof. Note that by repeated applications of Claim 2, we have h(nx) = nh(x) for all real numbers
x and positive integers n satisfying nx ∈ (0, 2/3). Thus, for any positive integers p and q, we have

h

(
p

q

)
= 3ph

(
1

3q

)
=

3p

q
h(1/3),

which proves the claim when x is positive and rational.

Next, suppose for sake of contradiction that for some x ∈ (0, 2/3), we have |h(x)−3h(1/3)x| = δ > 0.
Consider any positive rational r < x. Then, we have by Claim 2 that

h(x− r) = h(x)− h(r) = h(x)− 3h(1/3)r = h(x)− 3h(1/3)x+ 3h(1/3)(x− r).

Thus, by taking r sufficiently close to x, we can ensure that

x− r < 1

3 · d1/δe
and |h(x− r)| > δ

2
.

However, this implies (again by repeated applications of Claim 2)

|h (2 · d1/δe · (x− r))| = 2 · d1/δe · |h(x− r)| > 1,

which is a contradiction, since h must take values in (−1/3, 2/3).

Thus, we have proved the claim for all positive x in the domain of h. Applying Claim 1, the result
extends also to negative x, completing the proof.

By Claim 3, we conclude that h must take the form h(x) = cx, where c is a constant. Moreover,
since h maps (−1/3, 2/3) to itself, we must have c ∈ [−1/2, 1]. In terms of f , this means we must
have

f(x) = g(1/(x+ 1)) =
1

3
+ c ·

(
1

x+ 1
− 1

3

)
for some constant −1/2 ≤ c ≤ 1. And we can readily check that all functions of this form do
indeed work, by plugging this expression into the original equation, and choosing u, v, w such that
x = u

v , y = v
w , z = w

u as at the beginning of this solution (which can be done whenever xyz = 1).

USAMO 3.

The integer m in the statement of the problem is ϕ(n), where ϕ is the Euler totient function.
Throughout our proof we write ps || m, if s is the greatest power of p that divides m.

We begin with the following lemma:

Lemma 1. If p is a prime and ps divides n for some positive integer s, then 1k + 2k + · · ·+ nk is
divisible by ps−1 for any integer k ≥ 1.
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Proof. Let {a1, a2, . . . , am} be a complete reduced residue set modulo ps and m = ps−1(p − 1).
First we prove by induction on s that for any positive integer k, ak1 + ak2 + · · ·+ akm is divisible by
ps−1. The base case s = 1 is true. Suppose the statement holds for some value of s. Consider the
statement for s+ 1. Note that

{a1, . . . , am, ps + a1, . . . , p
s + am, . . . , p

s(p− 1) + a1, . . . , p
s(p− 1) + am}

is a complete reduced residue set modulo ps+1. Therefore, the desired sum of k-th powers is equal
to

ak1 + · · ·+ akm + · · ·+ (ps(p− 1) + a1)
k + · · ·+ (ps(p− 1) + am)k ≡ p(ak1 + · · ·+ akm) ≡ 0 (mod ps),

where we have used the induction hypothesis for the second congruence. This gives the induction
step.

Now we are ready to prove the lemma. Because numbers from 1 to n can be split into blocks of
consecutive numbers of length ps, it is enough to show that 1k + 2k + · · ·+ (ps)k is divisible by ps−1

for any positive integer k. We use induction on s. The statement is true for s = 1. Assume the
statement is true for s− 1. The sum

1k + 2k + · · ·+ (ps)k = ak1 + ak2 + · · ·+ akm + pk
(

1k + 2k + · · ·+ (ps−1)k
)

is divisible by ps−1, because ps−1 | ak1 + · · ·+ akm and by the induction hypothesis ps−2 | 1k + · · ·+
(ps−1)k.

Now we proceed to prove a second lemma, from which the statement of the problem will immediately
follow:

Lemma 2. Suppose p is a prime dividing n. Let {a1, . . . , am} be a complete reduced residue set
mod n, and define s by ps || m. Then ps divides ak1 + · · ·+ akm for any integer k ≥ 1.

Proof. We fix p, and use induction on the number of prime factors of n (counted by multiplicity)
that are different from p. If there are no prime factors other than p, then n = ps+1, m = ps(p− 1),
and we proved in Lemma 1 that ak1 + · · ·+akm is divisible by ps. Now suppose the statement is true
for n. We show that it is true for nq, where q is a prime not equal to p.

Case 1. q divides n. We have ps || ϕ(n) and ps || ϕ(nq), because ϕ(nq) = qϕ(n). If {a1, a2, . . . , am}
is a complete reduced residue set modulo n, then

{a1, . . . , am, n+ a1, . . . , n+ am, . . . , n(q − 1) + a1, . . . , n(q − 1) + am}

is a complete reduced residue set modulo nq. The new sum of k-th powers is equal to

ak1 + · · ·+ akm + · · ·+ (n(q − 1) + a1)
k + · · ·+ (n(q − 1) + am)k = mnk

(
1k + · · ·+ (q − 1)k

)
+
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k

1

)
nk−1

(
1k−1 + · · ·+ (q − 1)k−1

)
(a1 + · · ·+ am) + · · ·+ q(ak1 + · · ·+ akm).

This sum is divisible by ps because ps || m and ps | aj1 + aj2 + · · ·+ ajm for any positive integer j.

Case 2. q doesn’t divide n. Suppose pb || q − 1, where b ≥ 0. Note that ϕ(nq) = ϕ(n)(q − 1), so
ps || ϕ(n) and ps+b || ϕ(nq). Let {a1, . . . , am} be a complete reduced residue set modulo n. The
complete reduced residue set modulo nq consists of the mq numbers

{a1, . . . , am, n+ a1, . . . , n+ am, . . . , n(q − 1) + a1, . . . , n(q − 1) + am}

with the m elements {qa1, qa2, . . . , qam} removed.

The new sum of k-th powers is equal to

ak1 + · · ·+ akm + · · ·+ (n(q − 1) + a1)
k + · · ·+ (n(q − 1) + am)k − qk(ak1 + · · ·+ akm) =

mnk
(

1k + · · ·+ (q − 1)k
)

+

(
k

1

)
nk−1

(
1k−1 + · · ·+ (q − 1)k−1

)
(a1 + · · ·+ am) + · · ·

· · ·+
(

k

k − 1

)
n (1 + · · ·+ (q − 1)) (ak−11 + · · ·+ ak−1m ) + q(ak1 + · · ·+ akm)− qk(ak1 + · · ·+ akm).

Each term (
k

j

)
nk−j

(
1k−j + · · ·+ (q − 1)k−j

)
(aj1 + · · ·+ ajm),

for 0 ≤ j ≤ k − 1, is divisible by ps+b because p | nk−j , ps | aj1 + · · ·+ ajm, and pb−1 | 1k−j + · · ·+
(q − 1)k−j by Lemma 1.

Also (qk − q)(ak1 + · · ·+ akm) is divisible by ps+b because pb | q − 1 | qk − q and ps | ak1 + · · · + akm.
Thus ps+b divides our sum and our proof is complete.

Remark. In fact, one can also show the converse statement: if {a1, a2, . . . , am} is as defined in
the problem and ak1 + ak2 + · · ·+ akm is divisible by m for every positive integer k, then every prime
that divides m also divides n.

USAMO 4.

The statement is trivial for p = 2, so assume p = 2q + 1 is odd. Create a p × p table of numbers,
as follows:

a1 + 1 · 0 a2 + 2 · 0 · · · ap + p · 0
a1 + 1 · 1 a2 + 2 · 1 · · · ap + p · 1

...
...

. . .
...

a1 + 1 · (p− 1) a2 + 2 · (p− 1) · · · ap + p · (p− 1)
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Interpret all the numbers above modulo p. Examine two different columns, say columns i and j.
We claim they agree (modulo p) in exactly one row. Indeed, ai + ik ≡ aj + jk (mod p) holds if and
only if (i − j)k ≡ aj − ai (mod p). Since p is prime and i 6≡ j (mod p), this condition holds for a
unique value of k (namely, k ≡ (aj − ai)(i− j)−1 (mod p)).

Thus, there are
(
p
2

)
= p(p−1)

2 = pq pairs of integers that are congruent modulo p and lie in the same
row of the table. Since there are only p rows, some row, say {an + nk}n, must contain at most q
such pairs.

We claim that this k satisfies our requirement. Indeed, if we read the p entries in this row one by
one, each entry either is distinct from all the previous ones, or is congruent to at least one previous
entry and thereby completes a pair. Since the latter case happens at most q times, there must be
at least p− q = (p+ 1)/2 distinct entries (modulo p), completing the proof.

USAMO 5.

First solution. In this particular configuration, we have

∠BAE = ∠BAC = ∠BDC = ∠EDQ = ∠EAQ,

∠PAE = 180◦ − ∠PBE = ∠CBD = ∠CAD = ∠EAD,

hence line AC is the internal angle bisector of angles BAQ and PAD. If we could prove that
∠GAM = ∠MAP , then line AM would prove to be the external angle bisector of ∠BAQ and
hence perpendicular to AC.

F

D

Q

E

A

G BP

M

C
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Since 4PAF and 4QAG are related by ∠PAF = ∠QAG, it now suffices to prove that

sin∠GAM
sin∠MAQ

=
sin∠PAM
sin∠MAF

, (1)

which is but a repeated application of the Law of Sines. Using the Ratio Lemma in 4PAF and
4QAG, (1) is equivalent to

GM

MQ

/
AG

AQ
=
PM

MF

/
AP

AF
, i.e.

GM

MP
· FM
MQ

=
AF ·AG
AP ·AQ

. (2)

We now calculate
GM

MP
· FM
MQ

=
sin∠GPF
sin∠CGQ

· sin∠GQF
sin∠PFC

=
GF · sin∠CGF

FP

CQ · sin∠GCF
GQ

·
GF · sin∠GFC

GQ

PC · sin∠GCF
FP

=
GF 2

sin2∠GCF
· sin∠CGF · sin∠GFC

CQ · CP
=
CF · CG
CP · CQ

. (3)

However, from 4CAP ∼ 4CBE and 4CAQ ∼ 4CDE, we have CP
AP = CE

BE and CQ
AQ = CE

DE . Hence

CP · CQ
AP ·AQ

=
EC2

EB · ED
=

EC2

EA · EC
. (4)

Further computations give

CF

AF
· CG
AG

=
sin∠BAC
sin∠ACD

· sin∠CAD
sin∠ACB

=
sin∠BAC
sin∠ACB

· sin∠CAD
sin∠ACD

=
sin∠CDB
sin∠BDA

· CD
DA

=
EC

EA
.

Combining this with (3) and (4), we finally have

GM

MP
· FM
MQ

=
CF · CG
CP · CQ

=
CF · CG
AP ·AQ

· EA
EC

=
AF ·AG
AP ·AQ

,

which gives us (2) and therefore (1). This completes the proof.

Second solution. Note by Power of a Point that CE · CA = CP · CB = CQ · CD. Thus we can
perform an inversion at C swapping these pairs of points. The point G is mapped to a point G∗

on ray
−−→
CB for which QEG∗C is cyclic, but then (using directed angles modulo 180◦) we have

∠CG∗E = ∠CQE = ∠CQP = ∠DBC = ∠EBC

and so we conclude EB = EG∗. Similarly, ED = EF ∗.

Now, M∗, the image of M , is the intersection (distinct from C) of the circumcircles of 4CG∗D
and 4CF ∗B; and we wish to show that ∠EM∗C = 90◦.
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D

B C

E

K

L

G∗

F ∗
M∗

Note that triangles M∗BG∗ and M∗F ∗D are similar, because (again with directed angles)

∠M∗BG∗ = ∠M∗BC = ∠M∗F ∗C = ∠M∗F ∗D

and
∠M∗G∗B = ∠M∗G∗C = ∠M∗DC = ∠M∗DF ∗.

Then, the same spiral similarity that sends 4M∗BG∗ to 4M∗F ∗D also maps the midpoint K of
BG∗ to the midpoint L of F ∗D. Consequently, ∠KM∗L = ∠BM∗F ∗ = ∠BCF ∗ = ∠KCL, which
means that M∗ lies on the circumcircle of triangle KLC as well. In other words, ELCKM∗ is a
cyclic pentagon with circumdiameter CE, implying that ∠EM∗C = 90◦, as desired.

Third solution. Similarly to the first solution, we begin by noting that

∠GAC = 180◦ − ∠DAC = 180◦ − ∠DBC = ∠PBE = 180◦ − ∠PAE.

Thus, AC is the external bisector of ∠GAP . By symmetry, AC is also the external bisector of
∠FAQ.

Now, for a small ε > 0, consider a homothety of factor 1− ε centered at C taking A, G, and Q to
A′, G′, and Q′, respectively. Let

X = AP ∩A′G′, Y = AF ∩A′Q′, M ′ = PF ∩G′Q′.

Note that A′G′Q′ and APF are perspective from the point C. Thus, by Desargues’ theorem, we
know that X, Y , and M ′ are collinear.

Moreover, since AC externally bisects ∠GAP and G′A′||GA, it follows that4AXA′ is isosceles, and
X lies on the perpendicular bisector of AA′. Similarly, Y also lies on this perpendicular bisector,
so the line through M ′, X, and Y is perpendicular to AC.



2018 USAMO – Solutions 9

Now, taking ε → 0, we see that M ′ → M while X → A and Y → A. It follows that MA is
perpendicular to AC, as desired.

USAMO 6.

For any permutation x = (x1, x2, . . . , xn) there is an inverse permutation y = (y1, y2, . . . , yn) where
we define yj = k if and only if xk = j. Then the ratios for the permutation y are

yj
j = k

xk
, hence

the reciprocals of those for the permutation x. Thus we see that y has distinct ratios if and only if
x does. In particular, modulo 2, an is the same as the number of permutations x which are equal
to their own inverse and have distinct ratios.

A permutation x is its own inverse if and only if it can be formed by breaking the numbers 1, 2, . . . , n
into singletons and pairs and defining xk = k if k is a singleton and xj = k, xk = j if {j, k} is
a pair. Any singleton gives a ratio of 1, so the distinct ratio condition forces there to be at most
one singleton (and hence, there is one singleton if n is odd and none if n is even). Thus we see
that an ≡ bn (mod 2), where bn is the number of ways to form bn/2c disjoint pairs of elements
of {1, 2, . . . , n} such that no pair forms the same ratio as any other pair. (To avoid ambiguity,
interpret “the ratio of a pair” to mean the ratio of its larger to its smaller element.)

Note that for any set of bn/2c disjoint pairs of elements of {1, 2, . . . , n}, if we have two pairs with
the same ratio, say {a, b} and {c, d} with a/b = c/d (or equivalently ad = bc), then replacing {a, b}
and {c, d} with {a, c} and {b, d} gives another such pairing. Accordingly, refer to a pair of pairs
{{a, b}, {c, d}} satisfying a/b = c/d as a potential swap. Notice that this move is reversible: we can
apply it to potential swap {{a, b}, {c, d}} to get to potential swap {{a, c}, {b, d}}, and vice versa.

Now build a graph whose vertices are sets of bn/2c disjoint pairs of elements from {1, 2, . . . , n},
and where two such pairings are connected by an edge if they differ by simultaneously applying
the move above to some non-empty collection of (disjoint) potential swaps. This graph G has
(2b(n−1)/2c+ 1)!! vertices, hence an odd number of vertices. (The notation k!! means 1 ·3 ·5 · · · k,
where k is odd. To see why this formula holds, note that for even n, we have n−1 possible partners
for the element 1 and then (n−3)!! ways to pair up the remaining elements by induction. Then, for
odd n, we have n choices for the singleton and (n− 2)!! ways to pair up the remaining elements.)

Moreover, bn is the number of isolated vertices of G, since all pairs in a given pairing have different
ratios if and only if there are no potential swaps.

Whenever we are given a set of m ≥ 2 pairs all with the same ratio, then we can form k disjoint
potential swaps from among these m pairs in

(
m
2k

)
(2k−1)!! ways. (For k = 0, we define (−1)!! = 1.)

Hence, the total number of ways to choose disjoint potential swaps from these m is

dm =
∑
k

(
m

2k

)
(2k − 1)!! ≡

∑
k

(
m

2k

)
= 2m−1 (mod 2).

Thus the number of choices (including the empty choice of no potential swaps) is even. More
generally, if we are given a set of pairs, for which at least two of them (but not necessarily all) have
the same ratio, then the number of ways to form disjoint potential swaps from them is again even:
we can arrange the pairs into groups of pairs having the same ratio, and the desired number is just
the product of dm, as m ranges over the sizes of the various groups. Thus, for any collection of
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bn/2c disjoint pairs from {1, 2, . . . , n}, if the pairs do not all have distinct ratios, then the number
of ways of constructing zero or more disjoint potential swaps among these pairs is even. Excluding
the empty choice, we see that every non-isolated vertex of G has odd degree. Thus, bn can also be
described as the number of vertices of G of even degree.

However, by the handshake lemma, any finite graph G has an even number of vertices of odd degree.
Thus, G, having an odd number of vertices, also has an odd number of vertices of even degree.
That is, bn is odd and hence so is an.
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§0 Problems

1. Let a, b, c be positive real numbers such that a+ b+ c = 4 3
√
abc. Prove that

2(ab+ bc+ ca) + 4 min(a2, b2, c2) ≥ a2 + b2 + c2.

2. Find all functions f : (0,∞)→ (0,∞) such that

f

(
x+

1

y

)
+ f

(
y +

1

z

)
+ f

(
z +

1

x

)
= 1

for all x, y, z > 0 with xyz = 1.

3. Let n ≥ 2 be an integer, and let {a1, . . . , am} denote the m = ϕ(n) integers less
than n and relatively prime to n. Assume that every prime divisor of m also divides
n. Prove that m divides ak1 + · · ·+ akm for every positive integer k.

4. Let p be a prime, and let a1, . . . , ap be integers. Show that there exists an integer
k such that the numbers

a1 + k, a2 + 2k, . . . , ap + pk

produce at least 1
2p distinct remainders upon division by p.

5. Let ABCD be a convex cyclic quadrilateral with E = AC ∩BD, F = AB ∩ CD,
G = DA ∩ BC. The circumcircle of 4ABE intersects line CB at B and P , and
that the circumcircle of 4ADE intersects line CD at D and Q. Assume C, B, P ,
G and C, Q, D, F are collinear in that order. Let M = FP ∩ GQ. Prove that
∠MAC = 90◦.

6. Let an be the number of permutations (x1, . . . , xn) of (1, . . . , n) such that the ratios
xk/k are all distinct. Prove that an is odd for all n ≥ 1.
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§1 USAMO 2018/1, proposed by Titu Andreescu

Let a, b, c be positive real numbers such that a+ b+ c = 4 3
√
abc. Prove that

2(ab+ bc+ ca) + 4 min(a2, b2, c2) ≥ a2 + b2 + c2.

WLOG let c = min(a, b, c) = 1 by scaling. The given inequality becomes equivalent to

4ab+ 2a+ 2b+ 3 ≥ (a+ b)2 ∀a+ b = 4(ab)1/3 − 1.

Now, let t = (ab)1/3 and eliminate a+ b using the condition, to get

4t3 + 2(4t− 1) + 3 ≥ (4t− 1)2 ⇐⇒ 0 ≤ 4t3 − 16t2 + 16t = 4t(t− 2)2

which solves the problem.
Equality occurs only if t = 2, meaning ab = 8 and a+ b = 7, which gives

{a, b} =

{
7±
√

17

2

}

with the assumption c = 1. Scaling gives the curve of equality cases.

3
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§2 USAMO 2018/2, proposed by Titu Andreescu and Nikolai
Nikolov

Find all functions f : (0,∞)→ (0,∞) such that

f

(
x+

1

y

)
+ f

(
y +

1

z

)
+ f

(
z +

1

x

)
= 1

for all x, y, z > 0 with xyz = 1.

The main part of the problem is to show all solutions are linear. As always, let x = b/c,
y = c/a, z = a/b (classical inequality trick). Then the problem becomes∑

cyc

f

(
b+ c

a

)
= 1.

Let f(t) = g( 1
t+1), equivalently g(s) = f(1/s− 1). Thus g : (0, 1)→ (0, 1) which satisfies∑

cyc g
(

a
a+b+c

)
= 1, or equivalently

g(a) + g(b) + g(c) = 1 ∀a+ b+ c = 1.

The rest of the solution is dedicated to solving this equivalent functional equation
in g. It is a lot of technical details and I will only outline them (with apologies to the
contestants who didn’t have that luxury).

Claim — The function g is linear.

Proof. This takes several steps, all of which are technical. We begin by proving g is linear
over [1/8, 3/8].

• First, whenever a+ b ≤ 1 we have

1− g(1− (a+ b)) = g(a) + g(b) = 2g

(
a+ b

2

)
.

Hence g obeys Jensen’s functional equation over (0, 1/2).

• Define h : [0, 1] → R by h(t) = g(2t+1
8 ) − (1 − t) · g(1/8) − t · g(3/8), then h

satisfies Jensen’s functional equation too over [0, 1]. We have also arranged that
h(0) = h(1) = 0, hence h(1/2) = 0 as well.

• Since

h(t) = h(t) + h(1/2) = 2h(t/2 + 1/4) = h(t+ 1/2) + h(0) = h(t+ 1/2)

for any t < 1/2, we find h is periodic modulo 1/2. It follows one can extend h̃ by

h̃ : R→ R by h̃(t) = h(t− btc)

and still satisfy Jensen’s functional equation. Because h̃(0) = 0, it’s well-known
this implies h̃ is additive (because h̃(x+ y) = 2h̃ ((x+ y)/2) = h̃(x) + h̃(y) for any
real numbers x to y).

4
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But h̃ is bounded below on [0, 1] since g ≥ 0, and since h̃ is also additive, it follows
(well-known) that h̃ is linear. Thus h is the zero function. So, the function g is linear
over [1/8, 3/8]; thus we may write g(x) = kx+ `, valid for 1/8 ≤ x ≤ 3/8.

Since 3g(1/3) = 1, it follows k + 3` = 1.
For 0 < x < 1/8 we have g(x) = 2g(0.15)−g(0.3−x) = 2(0.15k+`)−(k(0.3−x)+`) =

kx + `, so g is linear over (0, 3/8) as well. Finally, for 3/8 < x < 1, we use the given
equation

1 = g

(
1− x

2

)
+ g

(
1− x

2

)
+ g(x) =⇒ g(x) = 1− 2

(
k · 1− x

2
+ `

)
= kx+ `

since 1−x
2 < 5

16 <
3
8 . Thus g is linear over all.

Putting this back in, we deduce that g(x) = kx+ 1−k
3 for some k ∈ [−1/2, 1], and so

f(x) =
k

x+ 1
+

1− k
3

for some k ∈ [−1/2, 1]. All such functions work.

5
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§3 USAMO 2018/3, proposed by Ivan Borsenco

Let n ≥ 2 be an integer, and let {a1, . . . , am} denote the m = ϕ(n) integers less than n and

relatively prime to n. Assume that every prime divisor of m also divides n. Prove that m divides

ak1 + · · ·+ akm for every positive integer k.

For brevity, given any n, we let A(n) = {1 ≤ x ≤ n, gcd(x, n) = 1} (thus |A(n)| = ϕ(n)).
Also, let S(n, k) =

∑
a∈A(n) a

k.
We will prove the stronger statement (which eliminates the hypothesis on n).

Claim — Let n ≥ 2 be arbitrary (and k ≥ 0). If p | n, then

νp(ϕ(n)) ≤ νp(S(n, k)).

We start with the special case where n is a prime power.

Lemma

Let p be prime, e ≥ 1, k ≥ 0. We always have

S(pe, k) =
∑

x∈A(pe)

xk ≡ 0 (mod pe−1).

Proof. For p odd, this follows by taking a primitive root modulo pe−1. In the annoying
case p = 2, the proof is broken into two cases: for k odd it follows by pairing x with
2e − x and when k is even one can take 5 as a generator of all the quadratic residues as
in the p > 2 case.

Corollary

We have νp(1
k + · · ·+ tk) ≥ νp(t)− 1 for any k, t, p.

Proof. Assume p | t. Handle the terms in that sum divisible by p (by induction) and
apply the lemma a bunch of times.

Now the idea is to add primes q one at a time to n, starting from the base case n = pe.
So, formally we proceed by induction on the number of prime divisors of n. We’ll also
assume k ≥ 1 in what follows since the base case k = 0 is easy.

• First, suppose we want to go from n to nq where q - n. In that case ϕ(nq) gained
νp(q− 1) factors of p and then we need to show νp(S(nq, k)) ≥ νp(ϕ(n)) + νp(q− 1).
The trick is to write

A(nq) = {a+ nh | a ∈ A(n) and h = 0, . . . , q − 1} \ qA(n)

6
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and then expand using binomial theorem:

S(nq, k) =
∑

a∈A(n)

q−1∑
h=0

(a+ nh)k −
∑

a∈A(n)

(qa)k

= −qkS(n, k) +
∑

a∈A(n)

q−1∑
h=0

k∑
j=0

[(
k

j

)
ak−jnjhj

]

= −qkS(n, k) +
k∑

j=0

(k
j

)
nj

 ∑
a∈A(n)

ak−j

(q−1∑
h=0

hj

)
= −qkS(n, k) +

k∑
j=0

[(
k

j

)
njS(n, k − j)

(
q−1∑
h=1

hj

)]

= (q − qk)S(n, k) +

k∑
j=1

[(
k

j

)
njS(n, k − j)

(
q−1∑
h=1

hj

)]
.

We claim every term here has enough powers of p. For the first term, S(n, k) has
at least νp(ϕ(n)) factors of p; and we have the q − qk multiplier out there. For

the other terms, we apply induction to S(n, k − j); moreover
∑q−1

h=1 h
j has at least

νp(q − 1)− 1 factors of p by corollary, and we get one more factor of p (at least)
from nj .

• On the other hand, if q already divides n, then this time

A(nq) = {a+ nh | a ∈ A(n) and h = 0, . . . , q − 1} .

and we have no additional burden of p to deal with; the same calculation gives

S(nq, k) = qS(n, k) +

k∑
j=1

[(
k

j

)
njS(n, k − j)

(
q−1∑
h=1

hj

)]
.

which certainly has enough factors of p already.

Remark. A curious bit about the problem is that νp(ϕ(n)) can exceed νp(n), and so it is
not true that the residues of A(n) are well-behaved modulo ϕ(n). For example, the official
solutions give the following examples:

• Let n = 7 · 13, so ϕ(n) = 72. Then A(91) contains nine elements which are 0 (mod 9),
and only seven elements congruent to 7 (mod 9).

• Let n = 3 · 7 · 13 = 273, so ϕ(n) = 144. Then A(273) contains 26 elements congruent
to 1 (mod 9) and only 23 elements congruent to 4 (mod 9).

Note also n = 2 · 3 · 7 · 13 is an example where radϕ(n) | n.

Remark. The converse of the problem is true too (but asking both parts would make this
too long for exam).

7
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§4 USAMO 2018/4, proposed by Ankan Bhattacharya

Let p be a prime, and let a1, . . . , ap be integers. Show that there exists an integer k such that
the numbers

a1 + k, a2 + 2k, . . . , ap + pk

produce at least 1
2p distinct remainders upon division by p.

For each k = 0, . . . , p− 1 let Gk be the graph on on {1, . . . , p} where we join {i, j} if
and only if

ai + ik ≡ aj + jk (mod p) ⇐⇒ k ≡ −ai − aj
i− j

(mod p).

So we want a graph Gk with at least 1
2p connected components.

However, each {i, j} appears in exactly one graph Gk, so some graph has at most
1
p

(
p
2

)
= 1

2(p − 1) edges (by “pigeonhole”). This graph has at least 1
2(p + 1) connected

components, as desired.

Remark. Here is an example for p = 5 showing equality can occur:
0 0 3 4 3
0 1 0 2 2
0 2 2 0 1
0 3 4 3 0
0 4 1 1 4

 .
Ankan Bhattacharya points out more generally that ai = i2 is sharp in general.
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§5 USAMO 2018/5, proposed by Kada Williams

Let ABCD be a convex cyclic quadrilateral with E = AC ∩BD, F = AB ∩CD, G = DA ∩BC.

The circumcircle of 4ABE intersects line CB at B and P , and that the circumcircle of 4ADE
intersects line CD at D and Q. Assume C, B, P , G and C, Q, D, F are collinear in that order.

Let M = FP ∩GQ. Prove that ∠MAC = 90◦.

We present three general routes. (The second route, using the fact that AC is an angle
bisector, has many possible variations.)

First solution (Miquel points) This is indeed a Miquel point problem, but the main
idea is to focus on the self-intersecting cyclic quadrilateral PBQD as the key player,
rather than on the given ABCD.

Indeed, we will prove that A is its Miquel point; this follows from the following two
claims.

Claim — The self-intersecting quadrilateral PQDB is cyclic.

Proof. By power of a point from C: CQ · CD = CA · CE = CB · CP .

Claim — Point E lies on line PQ.

Proof. ]AEP = ]ABP = ]ABC = ]ADC = ]ADQ = ]AEQ.

P B

Q

D

E

C

H

A

G

F

M

To finish, let H = PD ∩BQ. By properties of the Miquel point, we have A is the foot
from H to CE. But also, points M , A, H are collinear by Pappus theorem on BPG and
DQF , as desired.

Second solution (projective) We start with a synthetic observation.

9
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Claim — The line AC bisects ∠PAD and ∠BAQ.

Proof. Angle chase: ]PAC = ]PAE = ]PBE = ]CBD = ]CAD.

There are three ways to finish from here:

• (Michael Kural) Suppose the external bisector of ∠PAD and ∠BAQ meet lines
BC and DC at X and Y . Then

−1 = (GP ;XC) = (FD;Y C)

which is enough to imply that XY , GQ, PF are concurrent (by so-called prism
lemma).

• (Daniel Liu) Alternatively, apply the dual Desargues involution theorem to complete
quadrilateral GQFPCM , through the point A. This gives that an involutive pairing
of

(AC,AM) (AP,AQ) (AG,AF ).

This is easier to see if we project it onto the line ` through C perpendicular to AC;
if we let P ′, Q′, G′, F ′ be the images of the last four lines, we find the involution
coincides with negative inversion through C with power

√
CB′ · CQ′ which implies

that AM ∩ ` is an infinity point, as desired.

• (Kada Williams) The official solution instead shows the external angle bisector by
a long trig calculation.

Third solution (inversion, Andrew Wu) Noting that CE ·CA = CP ·CB = CQ ·CD,
we perform an inversion at C swapping these pairs of points. The point G is mapped to
a point G∗ ray CB for which QEG∗C is cyclic, but then

]CG∗E = ]CQE = ]CQP = ]DBC = ]CBE

and so we conclude EB = EG∗. Similarly, ED = EF ∗.
Finally, M∗ = (CG∗D) ∩ (CF ∗B) 6= C, and we wish to show that ∠EM∗C = 90◦.

D

B C

E

K

L

G∗

F ∗
M∗
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Note that M∗ is the center of the spiral similarity sending BG∗ to F ∗E. Hence it
also maps the midpoint K of BG∗ to the midpoint L of F ∗E. Consequently, M∗ lies
on the circumcircle KLC as well. In other words, ELCKM∗ is a cyclic pentagon with
circumdiameter CE, as desired.
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§6 USAMO 2018/6, proposed by Richard Stong

Let an be the number of permutations (x1, . . . , xn) of (1, . . . , n) such that the ratios xk/k are all

distinct. Prove that an is odd for all n ≥ 1.

This is the official solution; the proof has two main insights.
The first idea:

Lemma

If a permutation x works, so does the inverse permutation.

Thus it suffices to consider permutations x in which all cycles have length at most 2.
Of course, there can be at most one fixed point (since that gives the ratio 1), and hence
exactly one if n is odd, none if n is even.

We consider the graph Kn such that the edge {i, j} is labeled with i/j (for i < j). The
permutations we’re considering are then equivalent to maximal matchings of this Kn.
We call such a matching fantastic if it has an all of distinct edge labels.

Now the second insight is that if edges ab and cd have the same label for a < b and
c < d, then so do edges ac and bd. Thus:

Definition. Given a matching M as above we say the neighbors of M are those other
matchings obtained as follows: for each label `, we take some disjoint pairs of edges
(possibly none) with label ` and apply the above switching operation (in which we replace
ab and cd with ac and bd).

This neighborship relation is reflexive, and most importantly it is symmetric (because
one can simply reverse the moves). But it is not transitive.

The second observation is that:

Claim — The matching M has an odd number of neighbors (including itself) if
and only if it is not fantastic.

Proof. Consider the label `, and assume it appears n` ≥ 1 times.
If we pick k disjoint pairs and swap them, the number of ways to do this is

(
n`
2k

)
(2k−1)!!,

and so the total number of ways to perform operations on the edges labeled ` is∑
k

(
n`
2k

)
(2k − 1)!! ≡

∑
k

(
n`
2k

)
= 2n`−1 (mod 2).

This is even if and only if n` > 1.
Finally, note that the number of neighbors of M is the product across all ` of the

above. So it is odd if and only if each factor is odd, if and only if n` = 1 for every `.

To finish, consider a huge simple graph Γ on all the maximal matchings, with edge
relations given by neighbor relation (we don’t consider vertices to be connected to
themselves). Observe that:

• Fantastic matchings correspond to isolated vertices (of degree zero, with no other
neighbors) of Γ.

• The rest of the vertices of Γ have odd degrees (one less than the neighbor count)
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• The graph Γ has an even number of vertices of odd degree (this is true for any
simple graph, see “handshake lemma”).

• The number of vertices of Γ is odd, namely (2 dn/2e − 1)!!.

This concludes the proof.
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2019 U.S.A. Mathematical Olympiad Solutions

USAMO 1. Answer: f(1000) may be any even positive integer.

To prove this, first, two bits of terminology: we say that f fixes the positive integer n if f(n) = n;
and we write fk for the function given by iterating f k times.

Now, note that as long as f fixes all odd numbers and f2 fixes all even numbers (which in particular
implies f(n) is even whenever n is), the function f satisfies the equation. Thus, for any even m, we
may take f(1000) = m, f(m) = 1000, and f(n) = n for all other n, and the condition is satisfied.

To see that f(1000) cannot be odd, we show the following two claims.

Claim 1. f is injective.

Proof. If f(a) = f(b), then a2 = ff(a)(a)f(f(a)) = ff(b)(b)f(f(b)) = b2, so a = b.

Claim 2. f fixes every odd number.

Proof. We prove this by induction on odd n ≥ 1.

Assume f fixes each element of S = {1, 3, . . . , n− 2} now (allowing S = ∅ for the base case n = 1).
Notice that if f(m) ∈ S, then f(m) = f(f(m)), implying m = f(m) ∈ S by injectivity. Applying
this repeatedly, we see that if fk(m) ∈ S for any k ≥ 1 then m ∈ S.

Now, we contend f(f(n)) = n. Indeed, suppose f(f(n)) 6= n. The two numbers ff(n)(n) or f(f(n))
have product n2 and aren’t both equal to n, so one of them must be less than n, and also odd,
therefore in S. However, by the result of the previous paragraph, this implies n ∈ S, which is a
contradiction.

Hence f(f(n)) = n. Let y = f(n), so f(y) = n. Then we now have

y2 = fn(y) · y = ny

where the step fn(y) = n used the fact that n is odd. We conclude n = y, as desired.

Now, if f(n) is odd, then f(n) = f(f(n)) implying n = f(n). In particular, f(n) cannot be odd for
any even n. This completes the proof.

Remark. An argument similar to the one for the second claim shows that in fact f2 fixes every
even number, so the functions identified in the beginning of the solution are actually the only
solutions to the equation.

This problem was proposed by Evan Chen.

USAMO 2. Note that there can only be one point P on AB satisfying the given angle condition,
since as P moves from A to B, ∠APD decreases while ∠BPC increases. Consequently, if we can
show that there is a single point P on AB such that ∠APD = ∠BPC and line PE bisects CD,
then it must coincide with the point in the problem statement, and we will be done. We construct
such a point as follows.
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Since AD2 + BC2 = AB2, there exists a point P on AB satisfying

AD2 = AP ·AB and BC2 = BP ·BA.

Thus AP/AD = AD/AB and BP/BC = BC/BA. We then have similar triangles, 4APD ∼
4ADB and 4BPC ∼ 4BCA, from which ∠APD = ∠ADB = ∠ACB = ∠BPC.

Now we show that line PE bisects CD. Define K = AC ∩ PD and L = BD ∩ PC.

A B

C

D

O

E

P

K
L

The quadrilaterals APLD and BPKC are cyclic, because

]ADL = ]ACB = ]BPC = ]APL

and similarly ]KCB = ]KPB. (The notation ] here refers to directed angles taken modulo
180◦.)

Now the quadrilateral AKLB is also cyclic, because

]AKB = ]CKB = ]CPB

and similarly ]ALB = ]APD, and these are equal.

Now the cyclic quadrilaterals imply ]KCD = ]ABD = ]ABL = ]AKL = ]CKL, from which
we conclude CD ‖ KL. Thus CDKL is a trapezoid whose legs intersect at P and whose diagonals
intersect at E. As is well-known (and can be quickly shown using Ceva’s theorem), this implies
that line PE bisects the bases CD and KL, as desired.

This problem was proposed by Ankan Bhattacharya.

USAMO 3. For an integer x, let l(x) be the length of its base-10 representation. We will show
that the only solutions are
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• f(X) = c, with c ∈ K;

• f(X) = ax, with a a power of 10; and

• f(X) = aX + b with a a power of 10, b ∈ K and l(b) < l(a).

Clearly all of these work. The following lemma is crucial to show that there are no other possibilities:

Lemma 1. The only x ∈ K such that xy ∈ K for all y ∈ K are the powers of 10.

Proof. Assume x has the property and is not a power of 10. By induction we get xn ∈ K for any n.
But, as is well-known, we can find a power of x that starts with any desired finite sequence of digits
(in particular, we can find one that starts with 7), which gives a contradiction. For completeness,
we give a proof of this fact in the next paragraph.

In general, suppose N is the number representing the desired sequence of digits. Assume that N +1
is not a power of 10 (if it is, just replace N by 10N). Then the claim is that there exist integers
j, k ≥ 0 such that N · 10k < xj < (N + 1) · 10k. Taking log10 of both sides, this is equivalent to
k + log10(N) < j log10(x) < k + log10(N + 1). Thus, what we need is

{log10(N)} < {j log10(x)} < {log10(N + 1)}

where {· · · } denotes the fractional part. To see that there is such a j, let M be large enough such
that 1/M < log10(N + 1) − log10(N). Divide the unit interval into M equal-sized subintervals.
Consider the values of {t log10(x)} for t = 1, 2, . . . ,M +1. By the pigeonhole principle, some two of
them fall in the same subinterval, and these two cannot be equal since log10(x) is irrational. Hence,
by subtracting, 0 < {(t′ − t) log10(x)} ≤ 1/M for some t′, t. If t′ > t, then consider the multiples
r · {(t′ − t) log10(x)} (for r = 1, 2, 3, . . .); one of them must eventually lie between {log10(N)} and
{log10(N + 1)}, and then j = r(t′ − t) is our desired value. If t′ < t, then similarly some multiple
r · {(t′− t) log10(x)} must lie between 1−{log10(N +1)} and 1−{log10(N)}, and the corresponding
value j = r(t− t′) does the trick.

Next, write f(X) = adX
d + . . . + a1X + a0. First let us prove that ai ∈ K ∪ {0} for all i. By

assumption

f(10n) =

d∑
j=0

aj10jn ∈ K.

Choosing n > maxj l(aj), the base-10 representation of f(10n) will consist only of the digits in
base 10 of the aj ’s and zeroes, hence all nonzero aj belong to K. A similar argument will yield the
crucial:

Lemma 2. For 0 ≤ r ≤ s ≤ d, with as nonzero, and any k ∈ K, we have ask
s−r(s

r

)
∈ K.

Proof. Fix k ∈ K and pick n large enough. The binomial formula yields

f(10n + k) =

d∑
j=0

aj(10n + k)j =

d∑
j=0

aj

j∑
i=0

10nikj−i
(
j

i

)
=

d∑
r=0

10nr
d∑

s=r

ask
s−r
(
s

r

)
.
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Picking n > max0≤r≤d l
(∑d

s=r ask
s−r(s

r

))
, we conclude as above that

∑d
s=r ask

s−r(s
r

)
∈ K. Since

k was arbitrary, we can replace k by 10pk and so also obtain
∑d

s=r as10(s−r)pks−r
(
s
r

)
∈ K for any

k ∈ K and p ≥ 1. Fixing k and choosing p large enough yields the result, by the same argument.

Suppose now that d ≥ 2. Thanks to the lemma (pick s = d and r = d−1, d−2) we obtain dadk ∈ K
and

(
d
2

)
adk

2 ∈ K for all k ∈ K. For k ∈ K and p large enough we also have
(
d
2

)
ad(10p + k)2 ∈ K

and arguing as above yields 2
(
d
2

)
adk ∈ K. Applying the first lemma, we deduce that dad and 2

(
d
2

)
ad

are powers of 10, thus their ratio d − 1 is also a power of 10 and so d = 2. Since dad = 2ad is a
power of 10 and adk

2 = adk
2
(
d
2

)
∈ K for k ∈ K, we obtain 5k2 ∈ K for all k ∈ K. Taking k = 12

yields a contradiction, since 5 · 122 = 720. This contradiction shows that d ≤ 1.

Consider the case d = 1 (the case d = 0 being trivial). If a0 = 0, then a1x ∈ K whenever
x ∈ K, so the first lemma implies a1 is a power of 10. Otherwise, the above discussion shows
that a0, a1 ∈ K and a1 is again a power of 10. We claim that the only extra restriction is that
l(a0) < l(a1). This condition is clearly sufficient. On the other hand, suppose that l(a0) ≥ l(a1)
and let a1 = 10f , a0 = g · 10e + (lower powers). If g < 7 picking x = (7 − g) · 10f−e ∈ K yields
a1x + a0 = 7 · 10e + (lower powers), and this is not in K, a contradiction. If g > 7, picking
x = (17− g) · 10f−e, provides the desired contradiction.

This problem was proposed by Titu Andreescu, Vlad Matei, and Cosmin Pohoata.

USAMO 4. The answer is (2n)! · 2n2
. It may be helpful to view the sets Si,j as being placed in a

grid, as shown in Figure 1. We say a choice of sets Si,j is valid if it satisfies the two conditions in
the problem. In a slight abuse of terminology, we also apply this definition at times when only some
of the (n + 1)2 total sets are chosen, with the rest left undetermined (in this case, the conditions
are ignored when one or more of the sets involved is undetermined).

S4,0

S3,0

S2,0

S1,0

S0,0

S4,1

S3,1

S2,1

S1,1

S0,1

S4,2

S3,2

S2,2

S1,2

S0,2

S4,3

S3,3

S2,3

S1,3

S0,3

S4,4

S3,4

S2,4

S1,4

S0,4

Figure 1: The Si,j arranged in a grid.

Let us define an initial configuration to be a valid choice of the sets corresponding to the top row
and rightmost column (i.e. sets of the form S0,j and Si,n). We first count the number of initial
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configurations. Since we must have

∅ = S0,0 ⊆ S0,1 ⊆ S0,2 ⊆ · · · ⊆ S0,n ⊆ S1,n ⊆ S2,n ⊆ · · · ⊆ Sn,n = {1, 2, . . . , 2n}

and recalling that |Si,j | = i + j, it follows that the above sequence of sets is obtained by adding
different elements of {1, 2, . . . , 2n} one at a time. We may add these 2n elements in any order, so
the number of initial configurations is (2n)!.

Next, for any 0 ≤ i, j < n, consider the sets Si,j , Si+1,j , Si,j+1, and Si+1,j+1. If they are part of a
valid choice, we must have

Si,j ⊆ Si+1,j+1 and |Si+1,j+1| = i + j + 2 = |Si,j |+ 2,

which implies Si+1,j+1 \ Si,j = {x, y} for some distinct x, y ∈ {1, 2, . . . 2n}. Then, Si+1,j and Si,j+1

are each either Si,j ∪ {x} or Si,j ∪ {y}. Let us say the ordered pair (i, j) is hot if Si+1,j and Si,j+1

are different and cold if they are the same. We define a hot-cold configuration to consist of a
designation of “hot” or “cold” for each of the n2 ordered pairs (i, j). Clearly, there are 2n

2
hot-cold

configurations.

Finally, we claim that given any initial configuration and any hot-cold configuration, there is a
unique valid choice of sets Si,j for 0 ≤ i, j ≤ n that agrees with both the initial configuration and
the hot-cold configuration. Indeed, we start with the initial configuration of 2n+ 1 sets and choose
the remaining sets one by one. We choose them in the following order:

S1,n−1, S1,n−2, . . ., S1,0,
S2,n−1, S2,n−2, . . ., S2,0,

...
...

. . .
...

Sn,n−1, Sn,n−2, . . ., Sn,0,

and we will make sure our choice of sets remains valid at each step. In terms of the grid in Figure
1, this corresponds to going row by row, going right to left in each row.

The above ordering ensures that when we are choosing Si,j , the sets Si−1,j , Si−1,j+1, and Si,j+1

have all been chosen already. Based on whether (i−1, j) is required to be hot or cold, we are forced
to set Si,j to be Si−1,j ∪ (Si,j+1 \Si−1,j+1) or Si−1,j+1, respectively. Moreover, it is straightforward
to check that the resulting choice of sets indeed remains valid, because we have ensured that
Si−1,j ⊆ Si,j ⊆ Si,j+1.

Thus, at the end of the procedure, we arrive at a unique valid choice of all (n + 1)2 of the Si,j ,

establishing the claim. It follows that there are (2n)! · 2n2
valid choices in total, as desired.

This problem was proposed by Ricky Liu.

USAMO 5. The answer is all (m,n) such that m + n is a power of 2.

First, if p | m + n for some prime p > 2, we show that any number a
b written on the board will

always have p | a + b. Indeed, if p | s + t and p | u + v, then the arithmetic mean of s
t and u

v is
sv+tu
2tv , and we note that

sv + tu + 2tv ≡ sv + tu + tv + su ≡ (s + t)(u + v) ≡ 0 (mod p).
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Since neither t nor v (nor 2) is divisible by p, we see that p still divides the sum of the numerator
and denominator after the fraction has been reduced. Similarly, the harmonic mean 2su

sv+tu also
satisfies the condition.

However, 1 = 1
1 , and no prime p > 2 divides 1 + 1, so no such prime can divide m+ n if Evan is to

ever be able to write 1 on the board. So we need m + n to be a power of 2.

We now show that Evan can fulfill his goal whenever m+ n is a power of 2. In fact, he can do this
by only using the arithmetic mean. To show this, first notice that since m + n is a power of 2, if
he started with the numbers 0 and m+n on the board, by repeatedly taking arithmetic means, he
could eventually produce any integer between 0 and m+n; in particular, he could obtain the value
m. But if f(x) = cx + d is any linear function, the arithmetic mean of f(x) and f(y) is f

(x+y
2

)
,

so by replicating the same sequence of steps that gets to m starting from 0 and m+ n, he can also
get to f(m) starting from f(0) and f(m + n). In particular, by taking c = n−m

mn and d = m
n , we

have f(0) = m
n , f(m + n) = n

m , and f(m) = 1, so by starting from m
n and n

m , Evan can eventually
reach 1, as needed.

(Note that the harmonic mean operation is never needed.)

This problem was proposed by Yannick Yao.

USAMO 6. We will first prove that P (x) = c(x2 + 3) is a solution for any real number c. This
reduces to checking that

x(x2 + 3) + y(y2 + 3) + z(z2 + 3) = xyz((x− y)2 + (y − z)2 + (z − x)2 + 9)

whenever 2xyz = x + y + z. Using the factorization of a3 + b3 + c3 − 3abc and the relation
x + y + z = 2xyz, the left-hand side equals

(x3 + y3 + z3) + 3(x + y + z) = 3xyz + (x + y + z)(x2 + y2 + z2 − xy − yz − zx) + 3(x + y + z)

= xyz(9 + (x− y)2 + (y − z)2 + (z − x)2),

as desired.

Next, we prove that these are all solutions of the problem. If P (x) = c is constant, then the left-

hand side of the original equation equals c(x+y+z)
xyz = 2c, while the right-hand side equals 3c. This

is only possible if c = 0. Therefore, if P (x) is a nonzero solution, it is not constant.

If x 6= 0, then y = 1
x and z = x + 1

x satisfy 2xyz = x + y + z, so

xP (x) +
1

x
P

(
1

x

)
+

(
x +

1

x

)
P

(
x +

1

x

)
=

(
x +

1

x

)(
P

(
x− 1

x

)
+ P (−x) + P

(
1

x

))
. (1)

Note that the left-hand side is symmetric with respect to x → 1
x , thus so must be the right-hand

side. It follows that

P

(
x− 1

x

)
+ P (−x) + P

(
1

x

)
= P

(
1

x
− x

)
+ P (x) + P

(
−1

x

)
.
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This can be rewritten as Q
(
x− 1

x

)
= Q(x) + Q

(
− 1

x

)
, where Q(X) = P (X) − P (−X). We also

know Q(0) = P (0)− P (0) = 0. Hence, as x→∞,

Q(x)−Q

(
x− 1

x

)
= −Q

(
−1

x

)
→ 0.

Now, if Q(x) = anx
n+an−1x

n−1+ · · ·+a0 with n ≥ 2, then the left-hand side of the above equation
is of the form nanx

n−2 + (lower-order terms), which fails to go to 0 as x→∞. Thus, Q has degree
at most 1, and since Q(0) = 0, then Q(x) = 2ax for some real number a.

Using P (x)−P (−x) = 2ax, we conclude that the odd part of P (x) is ax, so that P (x) = ax+f(x2)
for a polynomial f with real coefficients. Replacing P (x) = ax + f(x2) in relation (1) yields

ax2 + xf(x2) +
a

x2
+

1

x
f

(
1

x2

)
+ a

(
x2 + 2 +

1

x2

)
+

(
x +

1

x

)
f

(
x2 + 2 +

1

x2

)

=

(
x +

1

x

)(
f

(
x2 − 2 +

1

x2

)
+ f(x2) + f

(
1

x2

))
.

Multiplying by x, we deduce that 2ax
(
x2 + 1 + 1

x2

)
is a function of x2, which implies that a = 0.

Letting t = x2, the previous relation becomes

f(t) + tf

(
1

t

)
= (t + 1)

(
f

(
t + 2 +

1

t

)
− f

(
t− 2 +

1

t

))
.

Write f(t) = bnt
n + ...+ b0 with bn 6= 0 and suppose that n > 1. The largest term on the left-hand

side is bnt
n. However, the largest term on the right-hand side is the same as the largest term of

t(f(t + 2)− f(t− 2)),

which is 4bnt
n. This contradicts bn 6= 0, which means f(t) must be linear. We may check, if f(t) =

cx + d in the last formula, that d = 3c. Therefore, f(x) = c(x + 3), so P (x) = f(x2) = c(x2 + 3).

This problem was proposed by Titu Andreescu and Gabriel Dospinescu.
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§0 Problems

1. A function f : N→ N satisfies

f(f(. . . f︸ ︷︷ ︸
f(n) times

(n) . . . )) =
n2

f(f(n))

for all positive integers n. What are all possible values of f(1000)?

2. Let ABCD be a cyclic quadrilateral satisfying AD2 +BC2 = AB2. The diagonals
of ABCD intersect at E. Let P be a point on side AB satisfying ∠APD = ∠BPC.
Show that line PE bisects CD.

3. Let K be the set of positive integers not containing the decimal digit 7. Determine
all polynomials f(x) with nonnegative coefficients such that f(x) ∈ K for all x ∈ K.

4. Let n be a nonnegative integer. Determine the number of ways to choose sets
Sij ⊆ {1, 2, . . . , 2n}, for all 0 ≤ i ≤ n and 0 ≤ j ≤ n (not necessarily distinct), such
that

• |Sij | = i+ j, and

• Sij ⊆ Skl if 0 ≤ i ≤ k ≤ n and 0 ≤ j ≤ l ≤ n.

5. Let m and n be relatively prime positive integers. The numbers m
n and n

m are
written on a blackboard. At any point, Evan may pick two of the numbers x and
y written on the board and write either their arithmetic mean 1

2(x + y) or their

harmonic mean 2xy
x+y . For which (m,n) can Evan write 1 on the board in finitely

many steps?

6. Find all polynomials P with real coefficients such that

P (x)

yz
+
P (y)

zx
+
P (z)

xy
= P (x− y) + P (y − z) + P (z − x)

for all nonzero real numbers x, y, z obeying 2xyz = x+ y + z.
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§1 USAMO 2019/1, proposed by Evan Chen

A function f : N→ N satisfies

f(f(. . . f︸ ︷︷ ︸
f(n) times

(n) . . . )) =
n2

f(f(n))

for all positive integers n. What are all possible values of f(1000)?

Actually, we classify all such functions: f can be any function which fixes odd integers
and acts as an involution on the even integers. In particular, f(1000) may be any even
integer.

It’s easy to check that these all work, so now we check they are the only solutions.

Claim — f is injective.

Proof. If f(a) = f(b), then a2 = ff(a)(a)f(f(a)) = ff(b)(b)f(f(b)) = b2, so a = b.

Claim — f fixes the odd integers.

Proof. We prove this by induction on odd n ≥ 1.
Assume f fixes S = {1, 3, . . . , n− 2} now (allowing S = ∅ for n = 1). Now we have

that
ff(n)(n) · f2(n) = n2.

However, neither of the two factors on the left-hand side can be in S since f was injective.
Therefore they must both be n, and we have f2(n) = n.

Now let y = f(n), so f(y) = n. Substituting y into the given yields

y2 = fn(y) · y = fn+1(n) · y = ny

since n+ 1 is even. We conclude n = y, as desired.

Thus, f maps even integers to even integers. In light of this, we may let g = f(f(n))
(which is also injective), so we conclude that

gf(n)/2(n)g(n) = n2 for n = 2, 4, . . . .

Claim — The function g is the identity function.

Proof. The proof is similar to the earlier proof of the claim. Note that g fixes the odd
integers already. We proceed by induction to show g fixes the even integers; so assume g
fixes the set S = {1, 2, . . . , n− 1}, for some even integer n ≥ 2. In the equation

gf(n)/2(n) · g(n) = n2

neither of the two factors may be less than n. So they must both be n.

These three claims imply that the solutions we claimed earlier are the only ones.

3
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Remark. The last claim is not necessary to solve the problem; after realizing f and injective
fixes the odd integers, this answers the question about the values of f(1000). However, we
chose to present the “full” solution anyways.

Remark. After noting f is injective, another approach is outlined below. Starting from
any n, consider the sequence

n, f(n), f(f(n)),

and so on. We may let m be the smallest term of the sequence; then m2 = f(f(m))·ff(m)(m)
which forces f(f(m)) = ff(m)(m) = m by minimality. Thus the sequence is 2-periodic.
Therefore, f(f(n)) = n always holds, which is enough to finish.

Authorship comments I will tell you a great story about this problem. Two days before
the start of grading of USAMO 2017, I had a dream that I was grading a functional
equation. When I woke up, I wrote it down, and it was

ff(n)(n) =
n2

f(f(n))
.

You can guess the rest of the story (and imagine how surprised I was the solution set
was interesting). I guess some dreams do come true, huh?
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§2 USAMO 2019/2, proposed by Ankan Bhattacharya

Let ABCD be a cyclic quadrilateral satisfying AD2 + BC2 = AB2. The diagonals of ABCD

intersect at E. Let P be a point on side AB satisfying ∠APD = ∠BPC. Show that line PE

bisects CD.

Here are three solutions. The first two are similar although the first one makes use of
symmedians. The last solution by inversion is more advanced.

First solution using symmedians We define point P to obey

AP

BP
=
AD2

BC2
=
AE2

BE2

so that PE is the E-symmedian of 4EAB, therefore the E-median of 4ECD.
Now, note that

AD2 = AP ·AB and BC2 = BP ·BA.

This implies 4APD ∼ 4ABD and 4BPC ∼ 4BDP . Thus

]DPA = ]ADB = ]ACB = ]BCP

and so P satisfies the condition as in the statement (and is the unique point to do so), as
needed.

Second solution using only angle chasing (by proposer) We again re-define P to obey
AD2 = AP · AB and BC2 = BP · BA. As before, this gives 4APD ∼ 4ABD and
4BPC ∼ 4BDP and so we let

θ
def
= ]DPA = ]ADB = ]ACB = ]BCP.

Our goal is to now show PE bisects CD.
Let K = AC ∩ PD and L = AD ∩ PC. Since ]KPA = θ = ]ACB, quadrilateral

BPKC is cyclic. Similarly, so is APLD.

A B

D

P

C

K

L
E
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Finally AKLB is cyclic since

]BKA = ]BKC = ]BPC = θ = ]DPA = ]DLA = ]BLA.

This implies ]CKL = ]LBA = ]DCK, so KL ‖ BC. Then PE bisects BC by Ceva’s
theorem on 4PCD.

Third solution (using inversion) By hypothesis, the circle ωa centered at A with radius
AD is orthogonal to the circle ωb centered at B with radius BC. For brevity, we let Ia
and Ib denote inversion with respect to ωa and ωb.

We let P denote the intersection of AB with the radical axis of ωa and ωb; hence
P = Ia(B) = Ib(A). This already implies that

]DPA
Ia= ]ADB = ]ACB

Ib= ]BPC

so P satisfies the angle condition.

A B

D

P

C

K

L

Claim — The point K = Ia(C) lies on ωb and DP . Similarly L = Ib(D) lies on ωa

and CP .

Proof. The first assertion follows from the fact that ωb is orthogonal to ωa. For the other,
since (BCD) passes through A, it follows P = Ia(B), K = Ia(C), and D = Ia(D) are
collinear.

Finally, since C, L, P are collinear, we get A is concyclic with K = Ia(C), L = Ia(L),
B = Ia(B), i.e. that AKLB is cyclic. So KL ‖ CD by Reim’s theorem, and hence PE
bisects CD by Ceva’s theorem.

6
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§3 USAMO 2019/3, proposed by Titu Andreescu, Vlad Matei,
and Cosmin Pohoata

Let K be the set of positive integers not containing the decimal digit 7. Determine all polynomials

f(x) with nonnegative coefficients such that f(x) ∈ K for all x ∈ K.

The answer is only the obvious ones: f(x) = 10ex, f(x) = k, and f(x) = 10ex+ k, for
any choice of k ∈ K and e > log10 k (with e ≥ 0).

Now assume f satisfies f(K) ⊆ K; such polynomials will be called stable. We first prove
the following claim which reduces the problem to the study of monomials.

Lemma (Reduction to monomials)

If f(x) = a0 + a1x+ a2x
2 + . . . is stable, then each monomial a0, a1x, a2x

2, . . . is
stable.

Proof. For any x ∈ K, plug in f(10ex) for large enough e: the decimal representation of
f will contain a0, a1x, a2x

2 with some zeros padded in between.

Let’s tackle the linear case next. Here is an ugly but economical proof.

Claim (Linear classification) — If f(x) = cx is stable, then c = 10e for some
nonnegative integer e.

Proof. We will show when c 6= 10e then we can find x ∈ K such that cx starts with the
digit 7. This can actually be done with the following explicit cases in terms of how c
starts in decimal notation:

• For 9 · 10e ≤ c < 10 · 10e, pick x = 8.

• For 8 · 10e ≤ c < 9 · 10e, pick x = 88.

• For 7 · 10e ≤ c < 8 · 10e, pick x = 1.

• For 4.4 · 10e ≤ c < 7 · 10e, pick 11 ≤ x ≤ 16.

• For 2.7 · 10e ≤ c < 4.4 · 10e, pick 18 ≤ x ≤ 26.

• For 2 · 10e ≤ c < 2.7 · 10e, pick 28 ≤ x ≤ 36.

• For 1.6 · 10e ≤ c < 2 · 10e, pick 38 ≤ x ≤ 46.

• For 1.3 · 10e ≤ c < 1.6 · 10e, pick 48 ≤ x ≤ 56.

• For 1.1 · 10e ≤ c < 1.3 · 10e, pick 58 ≤ x ≤ 66.

• For 1 · 10e ≤ c < 1.1 · 10e, pick x = 699 . . . 9 for suitably many 9’s.

The hardest part of the problem is the case where deg f > 1. We claim that no
solutions exist then:

Claim (Higher-degree classification) — No monomial of the form f(x) = cxd is stable
for any d > 1.

7
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Proof. Note that f(10x+ 3) is stable too. Thus

f(10x+ 3) = 3d + 10d · 3d−1x+ 100

(
d

2

)
· 3d−1x2 + . . .

is stable. By applying the lemma the linear monomial 10d · 3d−1x is stable, so 10d · 3d−1
is a power of 10, which can only happen if d = 1.

Thus the only nonconstant stable polynomials with nonnegative coefficients must be of
the form f(x) = 10ex+ k for e ≥ 0. It is straightforward to show we then need k < 10e

and this finishes the proof.

Remark. The official solution replaces the proof for f(x) = cx with Kronecker density.
From f(1) = c ∈ K, we get f(c) = c2 ∈ K, et cetera and hence cn ∈ K. But it is known
that when c is not a power of 10, some power of c starts with any specified prefix.

8

http://web.evanchen.cc


USAMO 2019 Solution Notes web.evanchen.cc, updated April 17, 2020

§4 USAMO 2019/4, proposed by Ricky Liu

Let n be a nonnegative integer. Determine the number of ways to choose sets Sij ⊆ {1, 2, . . . , 2n},
for all 0 ≤ i ≤ n and 0 ≤ j ≤ n (not necessarily distinct), such that

• |Sij | = i+ j, and

• Sij ⊆ Skl if 0 ≤ i ≤ k ≤ n and 0 ≤ j ≤ l ≤ n.

The answer is (2n)! · 2n2
. First, we note that ∅ = S00 ( S01 ( · · · ( Snn = {1, . . . , 2n}

and thus multiplying by (2n)! we may as well assume S0i = {1, . . . , i} and Sin =
{1, . . . , n+ i}. We illustrate this situation by placing the sets in a grid, as below for
n = 4; our goal is to fill in the rest of the grid.

1234 12345 123456 1234567 12345678
123
12
1
∅


We claim the number of ways to do so is 2n

2
. In fact, more strongly even the partial

fillings are given exactly by powers of 2.

Claim — Fix a choice T of cells we wish to fill in, such that whenever a cell is in T ,
so are all the cells above and left of it. (In other words, T is a Young tableau.) The
number of ways to fill in these cells with sets satisfying the inclusion conditions is
2|T |.

An example is shown below, with an indeterminate set marked in red (and the rest of T
marked in blue). 

1234 12345 123456 1234567 12345678
123 1234 12346 123467
12 124 1234 or 1246
1 12
∅ 2


Proof. The proof is by induction on |T |, with |T | = 0 being vacuous.

Now suppose we have a corner

[
B C
A S

]
where A, B, C are fixed and S is to be chosen.

Then we may write B = A ∪ {x} and C = A ∪ {x, y} for x, y /∈ A. Then the two choices
of S are A ∪ {x} (i.e. B) and A ∪ {y}, and both of them are seen to be valid.

In this way, we gain a factor of 2 any time we add one cell as above to T . Since we
can achieve any Young tableau in this way, the induction is complete.
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§5 USAMO 2019/5, proposed by Yannick Yao

Let m and n be relatively prime positive integers. The numbers m
n and n

m are written on a

blackboard. At any point, Evan may pick two of the numbers x and y written on the board and

write either their arithmetic mean 1
2 (x+ y) or their harmonic mean 2xy

x+y . For which (m,n) can

Evan write 1 on the board in finitely many steps?

We claim this is possible if and only m + n is a power of 2. Let q = m/n, so the
numbers on the board are q and 1/q.
Impossibility: The main idea is the following.

Claim — Suppose p is an odd prime. Then if the initial numbers on the board are
−1 (mod p), then all numbers on the board are −1 (mod p).

Proof. Let a ≡ b ≡ −1 (mod p). Note that 2 6≡ 0 (mod p) and a+ b ≡ −2 6≡ 0 (mod p).
Thus a+b

2 and 2ab
a+b both make sense modulo p and are equal to −1 (mod p).

Thus if there exists any odd prime divisor p of m+ n (implying p - mn), then

q ≡ 1

q
≡ −1 (mod p).

and hence all numbers will be −1 (mod p) forever. This implies that it’s impossible to
write 1, whenever m+ n is divisible by some odd prime.

Construction: Conversely, suppose m+ n is a power of 2. We will actually construct
1 without even using the harmonic mean.

q q−1q+q−1

2
3q+q−1

4
q+3q−1

4

7q+q−1

8
5q+3q−1

8
3q+5q−1

8
q+7q−1

8

Note that
n

m+ n
· q +

m

m+ n
· 1

q
= 1

and obviously by taking appropriate midpoints (in a binary fashion) we can achieve this
using arithmetic mean alone.
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§6 USAMO 2019/6, proposed by Titu Andreescu and Gabriel
Dospinescu

Find all polynomials P with real coefficients such that

P (x)

yz
+
P (y)

zx
+
P (z)

xy
= P (x− y) + P (y − z) + P (z − x)

for all nonzero real numbers x, y, z obeying 2xyz = x+ y + z.

The given can be rewritten as saying that

Q(x, y, z)
def
= xP (x) + yP (y) + zP (z)

− xyz (P (x− y) + P (y − z) + P (z − x))

is a polynomial vanishing whenever xyz 6= 0 and 2xyz = x+ y + z, for real numbers x, y,
z.

Claim — This means Q(x, y, z) vanishes also for any complex numbers x, y, z
obeying 2xyz = x+ y + z.

Proof. Indeed, this means that the rational function

R(x, y)
def
= Q

(
x, y,

x+ y

2xy − 1

)
vanishes for any real numbers x and y such that xy 6= 1

2 , x 6= 0, y 6= 0, x+ y 6= 0. This
can only occur if R is identically zero as a rational function with real coefficients. If we
then regard R as having complex coefficients, the conclusion then follows.

Remark (Algebraic geometry digression on real dimension). Note here we use in an essential
way that z can be solved for in terms of x and y. If s(x, y, z) = 2xyz− (x+y+ z) is replaced
with some general condition, the result may become false; e.g. we would certainly not expect
the result to hold when s(x, y, z) = x2 + y2 + z2 − (xy + yz + zx) since for real numbers
s = 0 only when x = y = z!

The general condition we need here is that s(x, y, z) = 0 should have “real dimension
two”. Here is a proof using this language, in our situation.

Let M ⊂ R3 be the surface s = 0. We first contend M is two-dimensional mani-
fold. Indeed, the gradient ∇s = 〈2yz − 1, 2zx− 1, 2xy − 1〉 vanishes only at the points
(±1/

√
2,±1/

√
2,±1/

√
2) where the ± signs are all taken to be the same. These points do

not lie on M , so the result follows by the regular value theorem. In particular the topological
closure of points on M with xyz 6= 0 is all of M itself; so Q vanishes on all of M .

If we now identify M with the semi-algebraic set consisting of maximal ideals (x− a, y −
b, z − c) in SpecR[x, y, z] satisfying 2abc = a+ b+ c, then we have real dimension two, and
thus the Zariski closure of M is a two-dimensional closed subset of SpecR[x, y, z]. Thus
it must be Z = V(2xyz − (x + y + z)), since this Z is an irreducible two-dimensional
closed subset (say, by Krull’s principal ideal theorem) containing M . Now Q is a global
section vanishing on all of Z, therefore Q is contained in the (radical, principal) ideal
(2xyz − (x+ y + z)) as needed. So it is actually divisible by 2xyz − (x+ y + z) as desired.

Now we regard P and Q as complex polynomials instead. First, note that substituting
(x, y, z) = (t,−t, 0) implies P is even. We then substitute

(x, y, z) =

(
x,

i√
2
,
−i√

2

)
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to get

xP (x) +
i√
2

(
P

(
i√
2

)
− P

(
−i√

2

))
=

1

2
x
(
P (x− i/

√
2) + P (x+ i/

√
2) + P (

√
2i)
)

which in particular implies that

P

(
x+

i√
2

)
+ P

(
x− i√

2

)
− 2P (x) ≡ P (

√
2i)

identically in x. The left-hand side is a second-order finite difference in x (up to scaling
the argument), and the right-hand side is constant, so this implies degP ≤ 2.

Since P is even and degP ≤ 2, we must have P (x) = cx2 + d for some real numbers c
and d. A quick check now gives the answer P (x) = c(x2 + 3) which all work.
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1 Day 1
1.1 Problem 1
1.2 Problem 2
1.3 Problem 3

2 Day 2
2.1 Problem 4
2.2 Problem 5
2.3 Problem 6

Let  be a fixed acute triangle inscribed in a circle  with center . A variable point  is chosen on minor arc  of , and
segments  and  meet at . Denote by  and  the circumcenters of triangles  and , respectively.
Determine all points  for which the area of triangle  is minimized.

Solution

 

An empty  cube is given, and a  grid of square unit cells is drawn on each of its six faces.
A beam is a  rectangular prism. Several beams are placed inside the cube subject to the following conditions:

 The two  faces of each beam coincide with unit cells lying on opposite faces of the cube. (Hence, there are 
possible positions for a beam.)

 No two beams have intersecting interiors.

 The interiors of each of the four  faces of each beam touch either a face of the cube or the interior of the face of another
beam.

What is the smallest positive number of beams that can be placed to satisfy these conditions?

Solution

 

Let  be an odd prime. An integer  is called a quadratic non-residue if  does not divide  for any integer .

Denote by  the set of all integers  such that , and both  and  are quadratic non-residues. Calculate the
remainder when the product of the elements of  is divided by .

Solution
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Suppose that  are distinct ordered pairs of nonnegative integers. Let  denote the
number of pairs of integers  satisfying  and . Determine the largest possible value
of  over all possible choices of the  ordered pairs.

Solution

 

A finite set  of points in the coordinate plane is called overdetermined if  and there exists a nonzero polynomial , with
real coefficients and of degree at most , satisfying  for every point .

For each integer , find the largest integer  (in terms of ) such that there exists a set of  distinct points that is not
overdetermined, but has  overdetermined subsets.

Solution

Let  be an integer. Let  and  be  real numbers such that

Prove that

Solution
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This is an compilation of solutions for the 2020 USAMO. Some of the
solutions are my own work, but many are from the official solutions provided
by the organizers (for which they hold any copyrights), and others were found
on the Art of Problem Solving forums.

Corrections and comments are welcome!
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§0 Problems

1. Let ABC be a fixed acute triangle inscribed in a circle ω with center O. A variable
point X is chosen on minor arc AB of ω, and segments CX and AB meet at D.
Denote by O1 and O2 the circumcenters of triangles ADX and BDX, respectively.
Determine all points X for which the area of triangle OO1O2 is minimized.

2. An empty 2020× 2020× 2020 cube is given, and a 2020× 2020 grid of square unit
cells is drawn on each of its six faces. A beam is a 1× 1× 2020 rectangular prism.
Several beams are placed inside the cube subject to the following conditions:

• The two 1× 1 faces of each beam coincide with unit cells lying on opposite
faces of the cube. (Hence, there are 3 · 20202 possible positions for a beam.)

• No two beams have intersecting interiors.

• The interiors of each of the four 1× 2020 faces of each beam touch either a
face of the cube or the interior of the face of another beam.

What is the smallest positive number of beams that can be placed to satisfy these
conditions?

3. Let p be an odd prime. An integer x is called a quadratic non-residue if p does not
divide x− t2 for any integer t.

Denote by A the set of all integers a such that 1 ≤ a < p, and both a and 4− a are
quadratic non-residues. Calculate the remainder when the product of the elements
of A is divided by p.

4. Suppose that (a1, b1), (a2, b2), . . . , (a100, b100) are distinct ordered pairs of non-
negative integers. Let N denote the number of pairs of integers (i, j) satisfying
1 ≤ i < j ≤ 100 and |aibj − ajbi| = 1. Determine the largest possible value of N
over all possible choices of the 100 ordered pairs.

5. A finite set S of points in the coordinate plane is called overdetermined if |S| ≥ 2
and there exists a nonzero polynomial P (t), with real coefficients and of degree at
most |S| − 2, satisfying P (x) = y for every point (x, y) ∈ S.

For each integer n ≥ 2, find the largest integer k (in terms of n) such that there
exists a set of n distinct points that is not overdetermined, but has k overdetermined
subsets.

6. Let n ≥ 2 be an integer. Let x1 ≥ x2 ≥ · · · ≥ xn and y1 ≥ y2 ≥ · · · ≥ yn be 2n real
numbers such that

0 = x1 + x2 + · · ·+ xn = y1 + y2 + · · ·+ yn,

and 1 = x21 + x22 + · · ·+ x2n = y21 + y22 + · · ·+ y2n.

Prove that
n∑
i=1

(xiyi − xiyn+1−i) ≥
2√
n− 1

.
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§1 USAMO 2020/1, proposed by Zuming Feng

Let ABC be a fixed acute triangle inscribed in a circle ω with center O. A variable point X is

chosen on minor arc AB of ω, and segments CX and AB meet at D. Denote by O1 and O2 the

circumcenters of triangles ADX and BDX, respectively. Determine all points X for which the

area of triangle OO1O2 is minimized.

We prove [OO1O2] ≥ 1
4 [ABC], with equality if and only if CX ⊥ AB.

First approach (Bobby Shen) We use two simultaneous inequalities:

• Let M and N be the midpoints of CX and DX. Then MN equals the length
of the O-altitude of 4OO1O2, since O1O2 and DX meet at N at a right angle.
Moreover, we have

MN =
1

2
CD ≥ 1

2
ha

where ha denotes the A-altitude.

• The projection of O1O2 onto line AB has length exactly AB/2. Thus

O1O2 ≥
1

2
AB.

So, we find

[OO1O2] =
1

2
·MN ·O1O2 ≥

1

8
ha ·AB =

1

4
[ABC].

Note that equality occurs in both cases if and only if CX ⊥ AB. So the area is minimized
exactly when this occurs.

Second approach (Evan’s solution) We need two claims.

Claim — We have 4OO1O2 ∼ 4CBA, with opposite orientation.

Proof. Notice that OO1 ⊥ AX and O1O2 ⊥ CX, so ]OO1O2 = ]AXC = ]ABC.
Similarly ]OO2O1 = ]BAC.

Therefore, the problem is equivalent to minimizing O1O2.

3
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C

A B

X

D

O1

O2

O

Claim (Salmon theorem) — We have 4XO1O2 ∼ 4XAB.

Proof. It follows from the fact that 4AO1X ∼ 4BO2X (since ]ADX = ]XDB =⇒
]XO1A = ]XO2B) and that spiral similarities come in pairs.

Let θ = ∠ADX. The ratio of similarity in the previous claim is equal to XO1
XA = 1

2 sin θ .
In other words,

O1O2 =
AB

2 sin θ
.

This is minimized when θ = 90◦, in which case O1O2 = AB/2 and [OO1O2] = 1
4 [ABC].

This completes the solution.

4
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§2 USAMO 2020/2, proposed by Alex Zhai

An empty 2020× 2020× 2020 cube is given, and a 2020× 2020 grid of square unit cells is drawn
on each of its six faces. A beam is a 1× 1× 2020 rectangular prism. Several beams are placed
inside the cube subject to the following conditions:

• The two 1× 1 faces of each beam coincide with unit cells lying on opposite faces of the
cube. (Hence, there are 3 · 20202 possible positions for a beam.)

• No two beams have intersecting interiors.

• The interiors of each of the four 1× 2020 faces of each beam touch either a face of the cube
or the interior of the face of another beam.

What is the smallest positive number of beams that can be placed to satisfy these conditions?

Answer: 3030 beams.

Construction: We first give a construction with 3n/2 beams for any n× n× n box,
where n is an even integer. Shown below is the construction for n = 6, which generalizes.
(The left figure shows the cube in 3d; the right figure shows a direct view of the three
visible faces.)

Left face Right face

Top face

To be explicit, impose coordinate axes such that one corner of the cube is the origin. We
specify a beam by two opposite corners. The 3n/2 beams come in three directions, n/2
in each direction:

• (0, 0, 0)→ (1, 1, n), (2, 2, 0)→ (3, 3, n), (4, 4, 0)→ (5, 5, n), and so on;

• (1, 0, 0)→ (2, n, 1), (3, 0, 2)→ (4, n, 3), (5, 0, 4)→ (6, n, 5), and so on;

• (0, 1, 1)→ (n, 2, 2), (0, 3, 3)→ (n, 4, 4), (0, 5, 5)→ (n, 6, 6), and so on.

This gives the figure we drew earlier and shows 3030 beams is possible.

Necessity: We now show at least 3n/2 beams are necessary. Maintain coordinates,
and call the beams x-beams, y-beams, z-beams according to which plane their long edges
are perpendicular too. Let Nx, Ny, Nz be the number of these.

5
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Claim — If min(Nx, Ny, Nz) = 0, then at least n2 beams are needed.

Proof. Assume WLOG that Nz = 0. Orient the cube so the z-plane touches the ground.
Then each of the n layers of the cube (from top to bottom) must be completely filled,
and so at least n2 beams are necessary,

We henceforth assume min(Nx, Ny, Nz) > 0.

Claim — If Nz > 0, then we have Nx +Ny ≥ n.

Proof. Again orient the cube so the z-plane touches the ground. We see that for each of
the n layers of the cube (from top to bottom), there is at least one x-beam or y-beam.
(Pictorially, some of the x and y beams form a “staircase”.) This completes the proof.

Proceeding in a similar fashion, we arrive at the three relations

Nx +Ny ≥ n
Ny +Nz ≥ n
Nz +Nx ≥ n.

Summing gives Nx +Ny +Nz ≥ 3n/2 too.

Remark. The problem condition has the following “physics” interpretation. Imagine the
cube is a metal box which is sturdy enough that all beams must remain orthogonal to the
faces of the box (i.e. the beams cannot spin). Then the condition of the problem is exactly
what is needed so that, if the box is shaken or rotated, the beams will not move.

Remark. Walter Stromquist points out that the number of constructions with 3030 beams
is actually enormous: not dividing out by isometries, the number is (2 · 1010!)3.

6
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§3 USAMO 2020/3, proposed by Richard Stong and Toni
Bluher

Let p be an odd prime. An integer x is called a quadratic non-residue if p does not divide x− t2
for any integer t.

Denote by A the set of all integers a such that 1 ≤ a < p, and both a and 4− a are quadratic

non-residues. Calculate the remainder when the product of the elements of A is divided by p.

The answer is that
∏
a∈A a ≡ 2 (mod p) regardless of the value of p. In the following

solution, we work in Fp always and abbreviate “quadratic residue” and “non-quadratic
residue” to “qr” and “non-qr”, respectively.

We define

A = {a ∈ Fp | a, 4− a non-qr}
B = {b ∈ Fp | b, 4− b qr, b 6= 0, b 6= 4} .

Notice that

A ∪B =

{
n ∈ Fp |

(
n

p

)
=

(
4− n
p

)
, n 6= 0, 4

}
.

We now present two approaches both based on the set B.

First approach (based on Holden Mui’s presentation in Mathematics Magazine) We
prove two claims.

Claim — Let n ∈ Fp. Then n(4− n) ∈ B if and only if n ∈ A ∪B \ {2}.

Proof. Note that 4− n(4− n) = (n− 2)2 is always a qr for n 6= 2. Hence, n(4− n) ∈ B
if and only if

• n(4− n) 6= 4, which just means n 6= 2, and

• n(4 − n) is a nonzero qr, which is equivalent to n and 4 − n either both being
nonzero qr’s or non-qr’s.

The latter condition just says n ∈ A ∪B so we’re done.

Claim — The map

A ∪B \ {2} → B by n 7→ n(4− n)

is a two-to-one map, i.e. every b ∈ B has exactly two pre-images.

Proof. Choose b ∈ B. The quadratic equation n(4−n) = b in n rewrites as n2−4n+b = 0,
and has discriminant 4(4 − b), which is a nonzero quadratic residue. Hence there are
exactly two values of n, as desired.

Therefore, it follows that ∏
n∈A∪B\{2}

n =
∏
b∈B

b.

So,
∏
a∈A a = 2.

7
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Second calculation approach (along the lines of official solution) We now do the
following magical calculation in Fp:∏

b∈B
b =

∏
b∈B

(4− b) =
∏

1≤y≤(p−1)/2
y 6=2

4−y2 is qr

(4− y2)

=
∏

1≤y≤(p−1)/2
y 6=2

4−y2 is qr

(2 + y)
∏

1≤y≤(p−1)/2
y 6=2

4−y2 is qr

(2− y)

=
∏

1≤y≤(p−1)/2
y 6=2

4−y2 is qr

(2 + y)
∏

(p+1)/2≤y≤p−1
y 6=p−2

4−y2 is qr

(2 + y)

=
∏

1≤y≤p−1
y 6=2,p−2
4−y2 is qr

(2 + y)

=
∏

3≤z≤p+1
z 6=4,p

z(4−z) is qr

z

=
∏

0≤z≤p−1
z 6=0,4,2

z(4−z) is qr

z.

Note z(4− z) is a nonzero quadratic residue if and only if z ∈ A ∪B. So the right-hand
side is almost the product over z ∈ A ∪B, except it is missing the z = 2 term. Adding it
in gives ∏

b∈B
b =

1

2

∏
0≤z≤p−1
z 6=0,4

z(4−z) is qr

z =
1

2

∏
a∈A

a
∏
b∈B

b.

This gives
∏
a∈A a = 2 as desired.
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§4 USAMO 2020/4, proposed by Ankan Bhattacharya

Suppose that (a1, b1), (a2, b2), . . . , (a100, b100) are distinct ordered pairs of nonnegative integers.

Let N denote the number of pairs of integers (i, j) satisfying 1 ≤ i < j ≤ 100 and |aibj − ajbi| = 1.

Determine the largest possible value of N over all possible choices of the 100 ordered pairs.

The answer is 197. In general, if 100 is replaced by n ≥ 2 the answer is 2n− 3.
The idea is that if we let Pi = (ai, bi) be a point in the coordinate plane, and let

O = (0, 0) then we wish to maximize the number of triangles 4OPiPj which have area
1/2. Call such a triangle good.

Construction of 197 points: It suffices to use the points (1, 0), (1, 1), (2, 1), (3, 1),
. . . , (99, 1) as shown. Notice that:

• There are 98 good triangles with vertices (0, 0), (k, 1) and (k+1, 1) for k = 1, . . . , 98.

• There are 99 good triangles with vertices (0, 0), (1, 0) and (k, 1) for k = 1, . . . , 99.

This is a total of 98 + 99 = 197 triangles.

O (1, 0)

(1, 1) (2, 1) (3, 1) (4, 1) · · ·

Proof that 197 points is optimal: We proceed by induction on n to show the bound
of 2n− 3. The base case n = 2 is evident.

For the inductive step, suppose (without loss of generality) that the point P = Pn =
(a, b) is the farthest away from the point O among all points.

Claim — This farthest point P = Pn is part of at most two good triangles.

Proof. We must have gcd(a, b) = 1 for P to be in any good triangles at all, since otherwise
any divisor of gcd(a, b) also divides 2[OPQ]. Now, we consider the locus of all points Q
for which [OPQ] = 1/2. It consists of two parallel lines passing with slope OP , as shown.

9
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(u, v)

(u′, v′)

O

P = (a, b)

Since gcd(a, b) = 1, see that only two lattice points on this locus actually lie inside the
quarter-circle centered at O with radius OP . Indeed if one of the points is (u, v) then the
others on the line are (u± a, v ± b) where the signs match. This proves the claim.

This claim allows us to complete the induction by simply deleting Pn.

10
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§5 USAMO 2020/5, proposed by Carl Schildkraut

A finite set S of points in the coordinate plane is called overdetermined if |S| ≥ 2 and there
exists a nonzero polynomial P (t), with real coefficients and of degree at most |S| − 2, satisfying
P (x) = y for every point (x, y) ∈ S.

For each integer n ≥ 2, find the largest integer k (in terms of n) such that there exists a set of

n distinct points that is not overdetermined, but has k overdetermined subsets.

We claim the answer is k = 2n−1 − n. We denote the n points by A.
Throughout the solution we will repeatedly use the following fact:

Lemma

If S is a finite set of points in the plane there is at most one polynomial with real
coefficients and of degree at most |S| − 1 whose graph passes through all points of S.

Proof. If any two of the points have the same x-coordinate then obviously no such
polynomial may exist at all.

Otherwise, suppose f and g are two such polynomials. Then f − g has degree at most
|S| − 1, but it has |S| roots, so is the zero polynomial.

Remark. Actually Lagrange interpolation implies that such a polynomial exists as long as
all the x-coordinates are different!

Construction: Consider the set A = {(1, a), (2, b), (3, b), (4, b), . . . , (n, b)}, where a
and b are two distinct nonzero real numbers. Any subset of the latter n− 1 points with
at least one element is overdetermined, and there are 2n−1 − n such sets.

Bound: Say a subset S of A is flooded if it is not overdetermined. For brevity, an
m-set refers simply to a subset of A with m elements.

Claim — If S is an flooded m-set for m ≥ 3, then at most one (m− 1)-subset of S
is not flooded.

Proof. Let S = {p1, . . . , pm} be flooded. Assume for contradiction that S − {pi} and
S − {pj} are both overdetermined. Then we can find polynomials f and g of degree at
most m− 3 passing through S − {pi} and S − {pj}, respectively.

Since f and g agree on S − {pi, pj}, which has m− 2 elements, by the lemma we have
f = g. Thus this common polynomial (actually of degree at most m− 3) witnesses that
S is overdetermined, which is a contradiction.

Claim — For all m = 2, 3, . . . , n there are at least
(
n−1
m−1

)
flooded m-sets of A.

Proof. The proof is by downwards induction on m. The base case m = n is by assumption.
For the inductive step, suppose it’s true for m. Each of the

(
n−1
m−1

)
flooded m-sets has at

least m− 1 flooded (m− 1)-subsets. Meanwhile, each (m− 1)-set has exactly n− (m− 1)
parent m-sets. We conclude the number of flooded sets of size m− 1 is at least

m− 1

n− (m− 1)

(
n− 1

m− 1

)
=

(
n− 1

m− 2

)
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as desired.

This final claim completes the proof, since it shows there are at most

n∑
m=2

((
n

m

)
−
(
n− 1

m− 1

))
= 2n−1 − n

overdetermined sets, as desired.

Remark (On repeated x-coordinates). Suppose A has two points p and q with repeated x-
coordinates. We can argue directly that A satisfies the bound. Indeed, any overdetermined set
contains at most one of p and q. Moreover, given S ⊆ A−{p, q}, if S∪{p} is overdetermined
then S ∪ {q} is not, and vice-versa. (Recall that overdetermined sets always have distinct
x-coordinates.) This gives a bound

[
2n−2 − (n− 2)− 1

]
+
[
2n−2 − 1

]
= 2n−1 − n already.

Remark (Alex Zhai). An alternative approach to the double-counting argument is to show
that any overdetermined m-set has an flooded m-superset. Together with the first claim,
this lets us pair overdetermined sets in a way that implies the bound.
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§6 USAMO 2020/6, proposed by David Speyer and Kiran
Kedlaya

Let n ≥ 2 be an integer. Let x1 ≥ x2 ≥ · · · ≥ xn and y1 ≥ y2 ≥ · · · ≥ yn be 2n real numbers such
that

0 = x1 + x2 + · · ·+ xn = y1 + y2 + · · ·+ yn,

and 1 = x21 + x22 + · · ·+ x2n = y21 + y22 + · · ·+ y2n.

Prove that
n∑

i=1

(xiyi − xiyn+1−i) ≥
2√
n− 1

.

We present two approaches. In both approaches, it’s helpful motivation that for even
n, equality occurs at

(xi) =
( 1√

n
, . . . ,

1√
n︸ ︷︷ ︸

n/2

,− 1√
n
, . . . ,− 1√

n︸ ︷︷ ︸
n/2

)

(yi) =
( n− 1√

n(n− 1)
,− 1√

n(n− 1)
, . . . ,− 1√

n(n− 1)︸ ︷︷ ︸
n−1

)

First approach (expected value) For a permutation σ on {1, 2, . . . , n} we define

Sσ =

n∑
i=1

xiyσ(i).

Claim — For random permutations σ, E[Sσ] = 0 and E[S2
σ] = 1

n−1 .

Proof. The first one is clear.
Since

∑
i<j 2xixj = −1, it follows that (for fixed i and j), E[yσ(i)yσ(j)] = − 1

n(n−1) ,
Thus ∑

i

x2i · E
[
y2σ(i)

]
=

1

n

2
∑
i<j

xixj · E
[
yσ(i)yσ(j)

]
= (−1) · 1

n(n− 1)

the conclusion follows.

Claim (A random variable in [0, 1] has variance at most 1/4) — If A is a random
variable with mean µ taking values in the closed interval [m,M ] then

E[(A− µ)2] ≤ 1

4
(M −m)2.

13
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Proof. By shifting and scaling, we may assume m = 0 and M = 1, so A ∈ [0, 1] and
hence A2 ≤ A. Then

E[(A− µ)2] = E[A2]− µ2 ≤ E[A]− µ2 = µ− µ2 ≤ 1

4
.

This concludes the proof.

Thus the previous two claims together give

max
σ

Sσ −min
σ
Sσ ≥

√
4

n− 1
=

2√
n− 1

.

But
∑

i xiyi = maxσ Sσ and
∑

i xiyn+1−i = minσ Sσ by rearrangement inequality and
therefore we are done.

Outline of second approach (by convexity, due to Alex Zhai) We will instead prove
a converse result: given the hypotheses

• x1 ≥ · · · ≥ xn
• y1 ≥ · · · ≥ yn
•
∑

i xi =
∑

i yi = 0

•
∑

i xiyi −
∑

i xiyn+1−i = 2√
n−1

we will prove that
∑
x2i
∑
y2i ≤ 1.

Fix the choice of y’s. We see that we are trying to maximize a convex function in n
variables (x1, . . . , xn) over a convex domain (actually the intersection of two planes with
several half planes). So a maximum can only happen at the boundaries: when at most
two of the x’s are different.

An analogous argument applies to y. In this way we find that it suffices to consider
situations where x• takes on at most two different values. The same argument applies to
y•.

At this point the problem can be checked directly.

14
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1 Day 1
1.1 Problem 1
1.2 Problem 2
1.3 Problem 3

2 Day 2
2.1 Problem 4
2.2 Problem 5
2.3 Problem 6

 For any geometry problem whose statement begins with an asterisk , the first page of the solution must be a large, in-
scale, clearly labeled diagram. Failure to meet this requirement will result in an automatic 1-point deduction.

 Rectangles   and  are erected outside an acute triangle  Suppose that

Prove that lines   and  are concurrent.

Solution

The Planar National Park is a subset of the Euclidean plane consisting of several trails which meet at junctions. Every trail has its
two endpoints at two different junctions whereas each junction is the endpoint of exactly three trails. Trails only intersect at
junctions (in particular, trails only meet at endpoints). Finally, no trails begin and end at the same two junctions.

A visitor walks through the park as follows: she begins at a junction and starts walking along a trail. At the end of that first trail, she
enters a junction and turns left. On the next junction she turns right, and so on, alternating left and right turns at each junction. She
does this until she gets back to the junction where she started. What is the largest possible number of times she could have
entered any junction during her walk, over all possible layouts of the park?

Solution

Let  be an integer. An  board is initially empty. Each minute, you may perform one of three moves: If there is an L-
shaped tromino region of three cells without stones on the board (see figure; rotations not allowed), you may place a stone in each
of those cells. If all cells in a column have a stone, you may remove all stones from that column. If all cells in a row have a stone,
you may remove all stones from that row.

For which  is it possible that, after some non-zero number of moves, the board has no stones?
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Solution

A finite set  of positive integers has the property that, for each  and each positive integer divisor  of , there exists a
unique element  satisfying . (The elements  and  could be equal.)

Given this information, find all possible values for the number of elements of .

Solution

Let  be an integer. Find all positive real solutions to the following system of  equations:

Solution

 Let  be a convex hexagon satisfying , , , and

Let , , and  be the midpoints of , , and . Prove that the circumcenter of , the circumcenter of
, and the orthocenter of  are collinear.
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This is an compilation of solutions for the 2021 USAMO. Some of the
solutions are my own work, but many are from the official solutions provided
by the organizers (for which they hold any copyrights), and others were found
by users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Rectangles BCC1B2, CAA1C2, and ABB1A2 are erected outside an acute triangle

ABC. Suppose that

∠BC1C + ∠CA1A+ ∠AB1B = 180◦.

Prove that lines B1C2, C1A2, and A1B2 are concurrent.

2. The Planar National Park is a undirected 3-regular planar graph (i.e. all vertices
have degree 3). A visitor walks through the park as follows: she begins at a vertex
and starts walking along an edge. When she reaches the other endpoint, she turns
left. On the next vertex she turns right, and so on, alternating left and right turns
at each vertex. She does this until she gets back to the vertex where she started.
What is the largest possible number of times she could have entered any vertex
during her walk, over all possible layouts of the park?

3. Let n ≥ 2 be an integer. An n× n board is initially empty. Each minute, you may
perform one of three moves:

• If there is an L-shaped tromino region of three cells without stones on the
board (see figure; rotations not allowed), you may place a stone in each of
those cells.

• If all cells in a column have a stone, you may remove all stones from that
column.

• If all cells in a row have a stone, you may remove all stones from that row.
For which n is it possible that, after some non-zero number of moves, the board
has no stones?

4. A finite set S of positive integers has the property that, for each s ∈ S, and
each positive integer divisor d of s, there exists a unique element t ∈ S satisfying
gcd(s, t) = d. (The elements s and t could be equal.)
Given this information, find all possible values for the number of elements of S.

5. Let n ≥ 4 be an integer. Find all positive real solutions to the following system of
2n equations:

a1 =
1

a2n
+

1

a2
, a2 = a1 + a3,

a3 =
1

a2
+

1

a4
, a4 = a3 + a5,

a5 =
1

a4
+

1

a6
, a6 = a5 + a7,

...
...

a2n−1 =
1

a2n−2
+

1

a2n
, a2n = a2n−1 + a1.

2
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6. Let ABCDEF be a convex hexagon satisfying AB ‖ DE, BC ‖ EF , CD ‖ FA,
and

AB ·DE = BC · EF = CD · FA.

Let X, Y , and Z be the midpoints of AD, BE, and CF . Prove that the circumcenter
of 4ACE, the circumcenter of 4BDF , and the orthocenter of 4XY Z are collinear.

3
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§1 USAMO 2021/1, proposed by Ankan Bhattacharya
Rectangles BCC1B2, CAA1C2, and ABB1A2 are erected outside an acute triangle ABC. Suppose
that

∠BC1C + ∠CA1A+ ∠AB1B = 180◦.

Prove that lines B1C2, C1A2, and A1B2 are concurrent.

The angle condition implies the circumcircles of the three rectangles concur at a single
point P . Then ]CPB2 = ]CPA1 = 90◦, hence P lies on A1B2 etc., so we’re done.

Remark. As one might guess from the two-sentence solution, the entire difficulty of the
problem is getting the characterization of the concurrence point.

4
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§2 USAMO 2021/2, proposed by Zoran Sunic
The Planar National Park is a undirected 3-regular planar graph (i.e. all vertices have degree 3).
A visitor walks through the park as follows: she begins at a vertex and starts walking along an
edge. When she reaches the other endpoint, she turns left. On the next vertex she turns right,
and so on, alternating left and right turns at each vertex. She does this until she gets back to the
vertex where she started. What is the largest possible number of times she could have entered
any vertex during her walk, over all possible layouts of the park?

The answer is 3.
We consider the trajectory of the visitor as an ordered sequence of turns. A turn is

defined by specifying a vertex, the incoming edge, and the outgoing edge. Hence there
are six possible turns for each vertex.

Claim — Given one turn in the sequence, one can reconstruct the entire sequence
of turns.

Proof. This is clear from the process’s definition: given a turn t, one can compute the
turn after it and the turn before it.

This implies already that the trajectory of the visitor, when extended to an infinite
sequence, is totally periodic (not just eventually periodic), because there are finitely
many possible turns, so some turn must be repeated. So, any turn appears at most once
in the period of the sequence, giving a naïve bound of 6 for the original problem.

However, the following claim improves the bound to 3.

Claim — It is impossible for both of the turns a → b → c and c → b → a to occur
in the same trajectory.

Proof. If so, then extending the path, we get a → b → c → d → e → · · · and · · · → e →
d → c → b → a, as illustrated below in red and blue respectively.

a

b

c

d

e

However, we assumed for contradiction the red and blue paths were part of the same
trajectory, yet they clearly never meet.

5

http://web.evanchen.cc


USAMO 2021 Solution Notes web.evanchen.cc, updated 27 January 2023

It remains to give a construction showing 3 can be achieved. There are many, many
valid constructions. One construction due to Danielle Wang is given here, who provided
the following motivation: “I was lying in bed and drew the first thing I could think of”.
The path is CAHIFGDBAHEFGJBAC which visits A three times.

2, 9

16

8, 15

1
7

11 5, 12

13

6

3

10
4

14

A B

C D

E F G

H I J

Remark. As the above example shows it is possible to transverse an edge more than once
even in the same direction, as in edge AH above.
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§3 USAMO 2021/3, proposed by Alex Zhai, Shaunak Kishore
Let n ≥ 2 be an integer. An n× n board is initially empty. Each minute, you may perform one
of three moves:

• If there is an L-shaped tromino region of three cells without stones on the board (see figure;
rotations not allowed), you may place a stone in each of those cells.

• If all cells in a column have a stone, you may remove all stones from that column.
• If all cells in a row have a stone, you may remove all stones from that row.

For which n is it possible that, after some non-zero number of moves, the board has no stones?

The answer is 3 | n.
Construction: For n = 3, the construction is fairly straightforward, shown below.

This can be extended to any 3 | n.
Polynomial-based proof of converse: Assume for contradiction 3 - n. We will

show the task is impossible even if we allow stones to have real weights in our process. A
valid elimination corresponds to a polynomial P ∈ R[x, y] such that

degx P ≤ n− 2

degy P ≤ n− 2

(1 + x+ y)P (x, y) ∈
〈
1 + x+ · · ·+ xn−1, 1 + y + · · ·+ yn−1

〉
.

(Here 〈. . . 〉 is an ideal of R[x, y].) In particular, if S is the set of nth roots of unity other
than 1, we should have

(1 + z1 + z2)P (z1, z2) = 0

for any z1, z2 ∈ S. Since 3 - n, it follows that 1 + z1 + z2 6= 0 always.
So P vanishes on S×S, a contradiction to the bounds on degP (by, say, combinatorial

nullstellensatz on any nonzero term).
Linear algebraic proof of converse (due to William Wang): Suppose there is a

valid sequence of moves. Call rj the number of operations clearing row j, indexing from
bottom-to-top. The idea behind the solution is that we are going to calculate, for each
cell, the number of times it is operated on entirely as a function of rj . For example, a
hypothetical illustration with n = 6 is partially drawn below, with the number in each
cell denoting how many times it was the corner of an L.

0 0 0 0 0 0
c1 c2 c3 = r3 c4 = r5 − r4 c5 = r5 0
...

... 2r4 + r3 + r2 − 2r5 r5 − r3 r4 0
...

... r4 + r3 + r2 + r1 − 2r5 r5 − r2 r3 0
...

... r4 + r2 + r1 − 2r5 r5 − r1 r2 0
...

... r4 + r1 − r5 r5 r1 0


7
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Let ai,j be the expression in (i, j). It will also be helpful to define ci in the obvious way
as well.

Claim — We have cn = rn = 0, an−1,j = rj and ai,n−1 = ci.

Proof. The first statement follows since (n, n) may never obtain a stone. The equation
an−1,j = rj follows as both equal the number of times that cell (n, j) obtains a stone.
The final equation is similar.

Claim — For 1 ≤ i, j ≤ n− 1, the following recursion holds:

ai,j + ai+1,j + ai+1,j−1 = ri + cj+1.

Proof. Focus on cell (i+ 1, j). The left-hand side counts the number of times that gains
a stone while the right-hand side counts the number of times it loses a stone; they must
be equal.

We can coerce the table above into matrix form now as follows. Define

K =



−1 −1 0 0 . . . 0 0 0
0 −1 −1 0 . . . 0 0 0
0 0 −1 −1 . . . 0 0 0
...

...
...

...
... . . . ...

...
0 0 0 0 . . . −1 −1 0
0 0 0 0 . . . 0 −1 −1
1 1 1 1 . . . 1 1 0


.

Then define a sequence of matrices Mi recursively by Mn−1 = id, and

Mi = id +KMi+1 = id +K + · · ·+Kn−1−i.

The matrices are chosen so that, by construction,

〈r1, . . . , rn−1〉Mi = 〈ai,1, . . . , ai,n−1〉

for i = 1, 2, . . . , n− 1. On the other hand, we can extend the recursion one level deeper
and obtain

〈r1, . . . , rn−1〉M0 = 〈0, . . . , 0〉 .

However, the crux of the solution is the following.

Claim — The eigenvalues of K are exactly −(1 + e
2πik
n ) for k = 1, 2, . . . , n− 1.

Proof. The matrix −(K+ id) is fairly known to have roots of unity as the coefficients.

However, we are told that apparetnly

0 = detM0 = det
(
id +K +K2 + · · ·+Kn−1

)
which means det(Kn − id) = 0. This can only happen if Kn has eigenvalue 1, meaning
that

[−(1 + ω)]n = 1

for ω some nth root of unity, not necessarily primitive. This can only happen if |1 + ω| = 1,
ergo 3 | n.

8
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§4 USAMO 2021/4, proposed by Carl Schildkraut
A finite set S of positive integers has the property that, for each s ∈ S, and each positive integer
divisor d of s, there exists a unique element t ∈ S satisfying gcd(s, t) = d. (The elements s and t
could be equal.)

Given this information, find all possible values for the number of elements of S.

The answer is that |S| must be a power of 2 (including 1), or |S| = 0 (a trivial case we
do not discuss further).

Construction: For any nonnegative integer k, a construction for |S| = 2k is given by

S = {(p1 or q1)× (p2 or q2)× · · · × (pk or qk)}

for 2k distinct primes p1, . . . , pk, q1, . . . , qk.

Converse: the main claim is as follows.

Claim — In any valid set S, for any prime p and x ∈ S, νp(x) ≤ 1.

Proof. Assume for contradiction e = νp(x) ≥ 2.

• On the one hand, by taking x in the statement, we see e
e+1 of the elements of S

are divisible by p.

• On the other hand, consider a y ∈ S such that νp(y) = 1 which must exist (say
if gcd(x, y) = p). Taking y in the statement, we see 1

2 of the elements of S are
divisible by p.

So e = 1, contradiction.

Now since |S| equals the number of divisors of any element of S, we are done.

9
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§5 USAMO 2021/5, proposed by Mohsen Jamaali
Let n ≥ 4 be an integer. Find all positive real solutions to the following system of 2n equations:

a1 =
1

a2n
+

1

a2
, a2 = a1 + a3,

a3 =
1

a2
+

1

a4
, a4 = a3 + a5,

a5 =
1

a4
+

1

a6
, a6 = a5 + a7,

...
...

a2n−1 =
1

a2n−2
+

1

a2n
, a2n = a2n−1 + a1.

The answer is that the only solution is (1, 2, 1, 2, . . . , 1, 2) which works.
We will prove a2k is a constant sequence, at which point the result is obvious.

First approach (Andrew Gu) Apparently, with indices modulo 2n, we should have

a2k =
1

a2k−2
+

2

a2k
+

1

a2k+2

for every index k (this eliminates all aodd’s). Define

m = min
k

a2k and M = max
k

a2k.

Look at the indices i and j achieving m and M to respectively get

m =
2

m
+

1

a2i−2
+

1

a2i+2
≥ 2

m
+

1

M
+

1

M
=

2

m
+

2

M

M =
2

M
+

1

a2j−2
+

1

a2j+2
≤ 2

M
+

1

m
+

1

m
=

2

m
+

2

M
.

Together this gives m ≥ M , so m = M . That means a2i is constant as i varies, solving
the problem.

Second approach (author’s solution) As before, we have

a2k =
1

a2k−2
+

2

a2k
+

1

a2k+2

The proof proceeds in three steps.

• Define
S =

∑
k

a2k, and T =
∑
k

1

a2k
.

Summing gives S = 4T . On the other hand, Cauchy-Schwarz says S · T ≥ n2, so
T ≥ 1

2n.
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• On the other hand,
1 =

1

a2k−2a2k
+

2

a22k
+

1

a2ka2k+2

Sum this modified statement to obtain

n =
∑
k

(
1

a2k
+

1

a2k+2

)2 QM-AM
≥ 1

n

(∑
k

1

a2k
+

1

a2k+2

)2

=
1

n
(2T )2

So T ≤ 1
2n.

• Since T ≤ 1
2n and T ≥ 1

2n, we must have equality everywhere above. This means
a2k is a constant sequence.

Remark. The problem is likely intractable over C, in the sense that one gets a high-degree
polynomial which almost certainly has many complex roots. So it seems likely that most
solutions must involve some sort of inequality, using the fact we are over R>0 instead.
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§6 USAMO 2021/6, proposed by Ankan Bhattacharya
Let ABCDEF be a convex hexagon satisfying AB ‖ DE, BC ‖ EF , CD ‖ FA, and

AB ·DE = BC · EF = CD · FA.

Let X, Y , and Z be the midpoints of AD, BE, and CF . Prove that the circumcenter of
4ACE, the circumcenter of 4BDF , and the orthocenter of 4XY Z are collinear.

We present two solutions.

Parallelogram solution found by contestants Note that the following figure is inten-
tionally not drawn to scale, to aid legibility. We construct parallelograms ABCE′, etc
as shown. Note that this gives two congruent triangles A′C ′E′ and B′D′F ′. (Assuming
that triangle XY Z is non-degenerate, the triangles A′C ′E′ and B′D′F ′ will also be
non-degenerate.)

B

C

D E

F

A

A′

C ′

E′

B′
D′

F ′

X

M

N

Claim — If AB ·DE = BC · EF = CD · FA = k, then the circumcenters of ACE
and A′C ′E′ coincide.

Proof. The power of A to (A′C ′E′) is AE′ ·AC ′ = BC ·EF = k; same for C and E.
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A′

C ′

E′

B′D′

F ′

XY

Z

Claim — Triangle XY Z is the vector average of the (congruent) medial triangles
of triangles A′C ′E′ and B′D′F ′.

Proof. If M and N are the midpoints of C ′E′ and B′F ′, then X is the midpoint of MN
by vector calculation:

~M + ~N

2
=

~C′+ ~E′

2 +
~B′+~F ′

2

2

=
~C ′ + ~E′ + ~B′ + ~F ′

4

=
( ~A+ ~E − ~F ) + (~C + ~A− ~B) + ( ~D + ~F − ~E) + ( ~B + ~D − ~C)

4

=
~A+ ~D

2
= ~X.

Hence the orthocenter of XY Z is the midpoint of the orthocenters of the medial triangles
of A′C ′E′ and B′D′F ′ — that is, their circumcenters.

Author’s solution Call MNP and UVW the medial triangles of ACE and BDF .
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M

N

P

U

V

W

A

C

E

B

D

F

X Y

Z

Claim — In trapezoid ABDE, the perpendicular bisector of XY is the same as
the perpendicular bisector of the midline WN .

Proof. This is true for any trapezoid: because WX = 1
2AB = Y N .

Claim — The points V , W , M , N are cyclic.

Proof. By power of a point from Y , since

WY · Y N =
1

2
DE · 1

2
AB =

1

2
EF · 1

2
BC = V Y · YM.

Applying all the cyclic variations of the above two claims, it follows that all six points
U , V , W , M , N , P are concyclic, and the center of that circle coincides with the
circumcenter of 4XY Z.

Remark. It is also possible to implement ideas from the first solution here, by showing all
six midpoints have equal power to (XY Z).

Claim — The orthocenter of XY Z is the midpoint of the circumcenters of 4ACE
and 4BDF .

Proof. Apply complex numbers with the unit circle coinciding with the circumcircle of

14
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NV PWMU . Then

orthocenter(XY Z) = x+ y + z =
a+ b+ c+ d+ e+ f

2
circumcenter(ACE) = orthocenter(MNP )

= m+ n+ p =
c+ e

2
+

e+ a

2
+

a+ c

2
= a+ c+ e

circumcenter(BDF ) = orthocenter(UVW )

= u+ v + w =
d+ f

2
+

f + b

2
+

b+ d

2
= b+ d+ f.
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1 Day 1
1.1 Problem 1
1.2 Problem 2
1.3 Problem 3

2 Day 2
2.1 Problem 4
2.2 Problem 5
2.3 Problem 6

Let  and  be positive integers. The cells of an  grid are colored amber and bronze such that

there are at least  amber cells and at least  bronze cells. Prove that it is possible to choose 
amber cells and  bronze cells such that no two of the  chosen cells lie in the same row or column.

Solution

Let  and  be fixed integers, and . Given are  identical black rods and  identical white rods,
each of side length 1.

We assemble a regular gon using these rods so that parallel sides are the same color. Then, a convex -gon  is formed
by translating the black rods, and a convex -gon  is formed by translating the white rods. An example of one way of doing
the assembly when  and  is shown below, as well as the resulting polygons  and .

Prove that the difference of the areas of  and  depends only on the numbers  and , and not on how the -gon was
assembled.

Solution

Let  be the set of all positive real numbers. Find all functions  such that for all  we have

Solution

Find all pairs of primes  for which  and  are both perfect squares.

Solution

A function  is essentially increasing if  holds whenever  are real numbers such that

 and .

Find the smallest integer  such that for any 2022 real numbers  there exist  essentially increasing
functions  such that
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Solution

There are 2022 users on a social network called Mathbook, and some of them are Mathbook-friends. (On Mathbook, friendship is
always mutual and permanent.)
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This is an compilation of solutions for the 2022 USAMO. Some of the
solutions are my own work, but many are from the official solutions provided
by the organizers (for which they hold any copyrights), and others were found
by users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Let a and b be positive integers. The cells of an (a+ b+ 1)× (a+ b+ 1) grid are

colored amber and bronze such that there are at least a2 + ab− b amber cells and
at least b2 + ab− a bronze cells. Prove that it is possible to choose a amber cells
and b bronze cells such that no two of the a+ b chosen cells lie in the same row or
column.

2. Let b ≥ 2 and w ≥ 2 be fixed integers, and n = b+ w. Given are 2b identical black
rods and 2w identical white rods, each of side length 1.
We assemble a regular 2n-gon using these rods so that parallel sides are the same
color. Then, a convex 2b-gon B is formed by translating the black rods, and a
convex 2w-gon W is formed by translating the white rods. An example of one
way of doing the assembly when b = 3 and w = 2 is shown below, as well as the
resulting polygons B and W .

W

B

Prove that the difference of the areas of B and W depends only on the numbers b
and w, and not on how the 2n-gon was assembled.

3. Solve over positive real numbers the functional equation

f(x) = f(f(f(x)) + y) + f(xf(y))f(x+ y).

4. Find all pairs of primes (p, q) for which p− q and pq − q are both perfect squares.

5. A function f : R → R is essentially increasing if f(s) ≤ f(t) holds whenever s ≤ t
are real numbers such that f(s) 6= 0 and f(t) 6= 0.
Find the smallest integer k such that for any 2022 real numbers x1, x2, . . . , x2022,
there exist k essentially increasing functions f1, . . . , fk such that

f1(n) + f2(n) + · · ·+ fk(n) = xn for every n = 1, 2, . . . , 2022.

6. There are 2022 users on a social network called Mathbook, and some of them are
Mathbook-friends. (On Mathbook, friendship is always mutual and permanent.)
Starting now, Mathbook will only allow a new friendship to be formed between two
users if they have at least two friends in common. What is the minimum number
of friendships that must already exist so that every user could eventually become
friends with every other user?

2
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§1 USAMO 2022/1, proposed by Ankan Bhattacharya
Let a and b be positive integers. The cells of an (a+ b+ 1)× (a+ b+ 1) grid are colored amber
and bronze such that there are at least a2 + ab− b amber cells and at least b2 + ab− a bronze
cells. Prove that it is possible to choose a amber cells and b bronze cells such that no two of the
a+ b chosen cells lie in the same row or column.

Claim — There exists a transversal Ta with at least a amber cells. Analogously,
there exists a transversal Tb with at least b bronze cells.

Proof. If one picks a random transversal, the expected value of the number of amber
cells is at least

a2 + ab− b2

a+ b+ 1
= (a− 1) +

1

a+ b+ 1
> a− 1.

Now imagine we transform Ta to Tb in some number of steps, by repeatedly choosing
cells c and c′ and swapping them with the two other corners of the rectangle formed by
their row/column, as shown in the figure.

c

c′

=⇒

By “discrete intermediate value theorem”, the number of amber cells will be either a or
a+ 1 at some point during this transformation. This completes the proof.

3
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§2 USAMO 2022/2, proposed by Ankan Bhattacharya
Let b ≥ 2 and w ≥ 2 be fixed integers, and n = b+ w. Given are 2b identical black rods and 2w
identical white rods, each of side length 1.

We assemble a regular 2n-gon using these rods so that parallel sides are the same color. Then,
a convex 2b-gon B is formed by translating the black rods, and a convex 2w-gon W is formed by
translating the white rods. An example of one way of doing the assembly when b = 3 and w = 2
is shown below, as well as the resulting polygons B and W .

W

B

Prove that the difference of the areas of B and W depends only on the numbers b and w, and
not on how the 2n-gon was assembled.

We are going to prove that one may swap a black rod with an adjacent white rod (as
well as the rods parallel to them) without affecting the difference in the areas of B −W .
Let ~u and ~v denote the originally black and white vectors that were adjacent on the
2n-gon and are now going to be swapped. Let ~x denote the sum of all the other black
vectors between ~u and −~u, and define ~y similarly. See the diagram below, where B0 and
W0 are the polygons before the swap, and B1 and W1 are the resulting changed polygons.

B0

x⃗

−x⃗

u⃗ B1

x⃗

−x⃗
v⃗

W0

v⃗
y⃗

−y⃗

W1

u⃗ y⃗

−y⃗

Observe that the only change in B and W is in the parallelograms shown above in
each diagram. Letting ∧ denote the wedge product, we need to show that

~u ∧ ~x− ~v ∧ ~y = ~v ∧ ~x− ~u ∧ ~y

4
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which can be rewritten as
(~u− ~v) ∧ (~x+ ~y) = 0.

In other words, it would suffice to show ~u−~v and ~x+~y are parallel. (Students not familiar
with wedge products can replace every ∧ with the cross product × instead.)

Claim — Both ~u− ~v and ~x+ ~y are perpendicular to vector ~u+ ~v.

Proof. We have (~u− ~v) ⊥ (~u+ ~v) because ~u and ~v are the same length.
For the other perpendicularity, note that ~u+ ~v + ~x+ ~y traces out a diameter of the

circumcircle of the original 2n-gon; call this diameter AB, so

A+ ~u+ ~v + ~x+ ~y = B.

Now point A+ ~u+ ~v is a point on this semicircle, which means (by the inscribed angle
theorem) the angle between ~u+ ~v and ~x+ ~y is 90◦.

5
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§3 USAMO 2022/3, proposed by Hung-Hsun Hans Yu
Solve over positive real numbers the functional equation

f(x) = f(f(f(x)) + y) + f(xf(y))f(x+ y).

The answer is f(x) ≡ c/x for any c > 0. This works, so we’ll prove this is the only
solution. The following is based on the solution posted by pad on AoPS.

In what follows, fn as usual denotes f iterated n times, and P (x, y) is the given
statement. Also, we introduce the notation Q for the statement

Q(a, b) : f(a) ≥ f(b) =⇒ f(f(b)) ≥ a.

To see why this statement Q is true, assume for contradiction that a > f(f(b)); then
consider P (b, a− f(f(b))) to get a contradiction.

The main idea of the problem is the following:

Claim — Any function f : R>0 → R>0 obeying statement Q satisfies f2(x) = f4(x).

Proof. From Q(t, t) we get

f2(t) ≥ t for all t > 0.

So this already implies f4(x) ≥ f2(x) by choosing t = f2(x). It also gives f(x) ≤ f3(x) ≤
f5(x) by choosing t = f(x), t = f3(x).

Then Q(f4(x), x) is valid and gives f2(x) ≥ f4(x), as needed.

Claim — The function f is injective.

Proof. Suppose f(u) = f(v) for some u > v. From Q(u, v) and Q(v, u) we have f2(v) ≥ u
and f2(u) ≥ v. Note that for all x > 0 we have statements

P (f2(x), u) =⇒ f3(x) = f(x+ u) + f(xf(u))f(x+ u) = (1 + f(xf(u)))f(x+ u)

P (f2(x), v) =⇒ f3(x) = f(x+ v) + f(xf(v))f(x+ v) = (1 + f(xf(v)))f(x+ v).

It follows that f(x+ u) = f(x+ v) for all x > 0.
This means that f is periodic with period T = u−v > 0. However, this is incompatible

with Q, because we would have Q(1+nT, 1) for all positive integers n, which is obviously
absurd.

Since f is injective, we obtain that f2(x) = x. Thus P (x, y) now becomes the statement

P (x, y) : f(x) = f(x+ y) ·
[
1 + f(xf(y))

]
.

In particular

P (1, y) =⇒ f(1 + y) =
f(1)

1 + y

so f is determined on inputs greater than 1. Finally, if a, b > 1 we get

P (a, b) =⇒ 1

a
=

1

a+ b
·
[
1 + f

(a
b
f(1)

)]
which is enough to determine f on all inputs, by varying (a, b).
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§4 USAMO 2022/4, proposed by Holden Mui
Find all pairs of primes (p, q) for which p− q and pq − q are both perfect squares.

The answer is (3, 2) only.
Set

a2 = p− q

b2 = pq − q.

Note that 0 < a < p, and 0 < b < p (because q ≤ p). Now subtracting gives

(b− a)︸ ︷︷ ︸
<p

(b+ a)︸ ︷︷ ︸
<2p

= b2 − a2 = p(q − 1)

The inequalities above now force b+ a = p. Hence q − 1 = b− a.
This means p and q − 1 have the same parity, which can only occur if q = 2. Finally,

taking mod 3 shows p ≡ 0 (mod 3). So (3, 2) is the only possibility (and it does work).
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§5 USAMO 2022/5, proposed by Gabriel Carroll
A function f : R → R is essentially increasing if f(s) ≤ f(t) holds whenever s ≤ t are real
numbers such that f(s) 6= 0 and f(t) 6= 0.

Find the smallest integer k such that for any 2022 real numbers x1, x2, . . . , x2022, there exist
k essentially increasing functions f1, . . . , fk such that

f1(n) + f2(n) + · · ·+ fk(n) = xn for every n = 1, 2, . . . , 2022.

The answer is 11 and, more generally, if 2022 is replaced by N then the answer is
blog2Nc+ 1.

Bound Suppose for contradiction that 2k − 1 > N and choose xn = −n for each
n = 1, . . . , N . Now for each index 1 ≤ n ≤ N , define

S(n) = {indices i for which fi(n) 6= 0} ⊆ {1, . . . , k}.

As each S(nt) is nonempty, by pigeonhole, two S(n)’s coincide, say S(n) = S(n′) for
n < n′. But it’s plainly impossible that xn > xn′ in that case due to the essentially
increasing condition.

Construction It suffices to do N = 2k − 1. Rather than drown the reader in notation,
we’ll just illustrate an example of the (inductive) construction for k = 4. Empty cells are
zero.

f1 f2 f3 f4
x1 = 3 3
x2 = 1 10 −9
x3 = 4 4
x4 = 1 100 200 −299
x5 = 5 200 −195
x6 = 9 100 −91
x7 = 2 2
x8 = 6 1000 2000 4000 −6994
x9 = 5 2000 4000 −5995
x10 = 3 1000 4000 −4997
x11 = 5 4000 −3995
x12 = 8 1000 2000 −2992
x13 = 9 2000 −1991
x14 = 7 1000 −993
x15 = 9 9

The general case is handled in the same way with powers of 10 replaced by powers of B,
for a sufficiently large number B.
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§6 USAMO 2022/6, proposed by Yannick Yao
There are 2022 users on a social network called Mathbook, and some of them are Mathbook-friends.
(On Mathbook, friendship is always mutual and permanent.)

Starting now, Mathbook will only allow a new friendship to be formed between two users if
they have at least two friends in common. What is the minimum number of friendships that must
already exist so that every user could eventually become friends with every other user?

With 2022 replaced by n, the answer is
⌈
3
2n

⌉
− 2.

Terminology Standard graph theory terms: starting from a graph G on n vertices,
we’re allowed to take any C4 in the graph and complete it to a K4. The problem asks
the minimum number of edges needed so that this operation lets us transform G to Kn.

Construction For even n, start with an edge ab, and then create n/2− 1 copies of C4

that use ab as an edge, as shown below for n = 14 (six copies of C4).

a b

This can be completed into Kn by first completing the n/2 − 1 C4’s into K4, then
connecting red vertices to every grey vertex, and then finishing up.

The construction for odd n is the same except with one extra vertex c which is connected
to both a and b.

Bound Notice that additional operations or connections can never hurt. So we will
describe a specific algorithm that performs operations on the graph until no more
operations are possible. This means that if this algorithm terminates with anything other
G = Kn, the graph was never completable to Kn to begin with.

The algorithm uses the following data: it keeps a list C of cliques of G, and a labeling
L : E(G) → C which assigns to every edge one of the cliques that contains it.

• Initially, C consists of one K2 for every edge of G, and each edge is labeled in the
obvious way.

• At each step, the algorithm arbitrarily takes any C4 = abcd whose four edges ab,
bc, cd, da do not all have the same label. Consider these labels that appear (at
least two, and up to four), and let V be the union of all vertices in any of these 2-4
cliques.

• Do the following graph operations: connect ac and bd, then connect every vertex
in V − {a, b, c, d} to each of {a, b, c, d}. Finally, complete this to a clique on V .

9
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• Update C by merging these 2-4 cliques into a single clique KV .

• Update L by replacing every edge that was labeled with one of these 2-4 cliques with
the label KV . Also, update every newly created edge to have label KV . However,
if there were existing edges not labeled with one of the 2-4 cliques, then we do not
update these!

• Stop once every C4 has only one label appearing among its edges. When this occurs,
no operations are possible at all on the graph.

A few steps of the process are illustrated below for a graph on six vertices with nine initial
edges. There are initially nine K2’s labeled A, B, . . . , I. Original edges are always bolder
than added edges. The relabeled edges in each step are highlighted in color. Notice how
we need an entirely separate operation to get G to become L, even though no new edges
are drawn in the graph.

A

B C

D

EF

G
H

I

1 2 3

456

Initial setup

J

J C

D

EJ

G J
I

J

1 2 3

456

Step 1: Operate on 1256.
Merges ABFH into J.
θ(J) = 4

K

K K

D

EK

G K
K

K K

K

1 2 3

456

Step 2: Operate on 1235.
Merges CIJ into K.
θ(K) = 6

L

L L

D

EL

L L
L

L L

L

1 2 3

456

Step 3: Operate on 2356.
Merges GK into L.
θ(L) = 7

As we remarked, if the graph is going to be completable to Kn at all, then this algorithm
must terminate with C = {Kn}. We will use this to prove our bound.

We proceed by induction in the following way. For a clique K, let θ(K) denote the
number of edges of the original graph G which are labeled by K (this does not include
new edges added by the algorithm); hence the problem amounts to estimating how small
θ(Kn) can be. We are trying to prove:

Claim — At any point in the operation, if K is a clique in the cover C, then

θ(K) ≥ 3|K|
2

− 2.

where |K| is the number of vertices in K.
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Proof. By induction on the time step of the algorithm. The base case is clear, because
then K is just a single edge of G, so θ(K) = 1 and |K| = 2.

The inductive step is annoying casework based on the how the merge occurred. Let
C4 = abcd be the 4-cycle operated on. In general, the θ value of a newly created K is
exactly the sum of the θ values of the merged cliques, by definition. Meanwhile, |K| is
the number of vertices in the union of the merged cliques; so it’s the sum of the sizes of
these cliques minus some error due to overcounting of vertices appearing more than once.
To be explicit:

• Suppose we merged four cliques W , X, Y , Z. By definition,

θ(K) = θ(W ) + θ(X) + θ(Y ) + θ(Z)

≥ 3

2
(|W |+ |X|+ |Y |+ |Z|)− 8 =

3

2
(|W |+ |X|+ |Y |+ |Z| − 4)− 2.

On the other hand |K| ≤ |W |+ |X|+ |Y |+ |Z| − 4; the −4 term comes from each
of {a, b, c, d} being in two (or more) of {W,X, Y, Z}. So this case is OK.

• Suppose we merged three cliques X, Y , Z. By definition,

θ(K) = θ(X) + θ(Y ) + θ(Z)

≥ 3

2
(|X|+ |Y |+ |Z|)− 6 =

3

2

(
|X|+ |Y |+ |Z| − 8

3

)
− 2.

On the other hand, |K| ≤ |X| + |Y | + |Z| − 3, since at least 3 of {a, b, c, d} are
repeated among X, Y , Z. Note in this case the desired inequality is actually strict.

• Suppose we merged two cliques Y , Z. By definition,

θ(K) = θ(Y ) + θ(Z)

≥ 3

2
(|Y |+ |Z|)− 4 =

3

2

(
|Y |+ |Z| − 4

3

)
− 2.

On the other hand, |K| ≤ |Y |+ |Z| − 2, since at least 2 of {a, b, c, d} are repeated
among Y , Z. Note in this case the desired inequality is actually strict.

Remark. Several subtle variations of this method do not seem to work.

• It does not seem possible to require the cliques in C to be disjoint, which is why it’s
necessary to introduce a label function L as well.

• It seems you do have to label the newly created edges, even though they do not count
towards any θ value. Otherwise the termination of the algorithm doesn’t tell you
enough.

• Despite this, relabeling existing edges, like G in step 1 of the example, 1 seems to
cause a lot of issues. The induction becomes convoluted if θ(K) is not exactly the
sum of θ-values of the subparts, while the disappearance of an edge from a clique will
also break induction.
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USAMO 2023 Solution Notes
Evan Chen《陳誼廷》

2 June 2023

This is a compilation of solutions for the 2023 USAMO. Some of the
solutions are my own work, but many are from the official solutions provided
by the organizers (for which they hold any copyrights), and others were found
by users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. In an acute triangle ABC, let M be the midpoint of BC. Let P be the foot of

the perpendicular from C to AM . Suppose that the circumcircle of triangle ABP
intersects line BC at two distinct points B and Q. Let N be the midpoint of AQ.
Prove that NB = NC.

2. Solve over the positive real numbers the functional equation

f(xy + f(x)) = xf(y) + 2.

3. Consider an n-by-n board of unit squares for some odd positive integer n. We say
that a collection C of identical dominoes is a maximal grid-aligned configuration on
the board if C consists of (n2 − 1)/2 dominoes where each domino covers exactly
two neighboring squares and the dominoes don’t overlap: C then covers all but
one square on the board. We are allowed to slide (but not rotate) a domino
on the board to cover the uncovered square, resulting in a new maximal grid-
aligned configuration with another square uncovered. Let k(C) be the number
of distinct maximal grid-aligned configurations obtainable from C by repeatedly
sliding dominoes.
Find all possible values of k(C) as a function of n.

4. Positive integers a and N are fixed, and N positive integers are written on a
blackboard. Alice and Bob play the following game. On Alice’s turn, she must
replace some integer n on the board with n+ a, and on Bob’s turn he must replace
some even integer n on the board with n/2. Alice goes first and they alternate
turns. If on his turn Bob has no valid moves, the game ends.
After analyzing the N integers on the board, Bob realizes that, regardless of what
moves Alice makes, he will be able to force the game to end eventually. Show
that, in fact, for this value of a and these N integers on the board, the game is
guaranteed to end regardless of Alice’s or Bob’s moves.

5. Let n ≥ 3 be an integer. We say that an arrangement of the numbers 1, 2, . . . , n2

in an n× n table is row-valid if the numbers in each row can be permuted to form
an arithmetic progression, and column-valid if the numbers in each column can be
permuted to form an arithmetic progression.
For what values of n is it possible to transform any row-valid arrangement into a
column-valid arrangement by permuting the numbers in each row?

6. Let ABC be a triangle with incenter I and excenters Ia, Ib, Ic opposite A, B, and
C, respectively. Given an arbitrary point D on the circumcircle of 4ABC that does
not lie on any of the lines IIa, IbIc, or BC, suppose the circumcircles of 4DIIa
and 4DIbIc intersect at two distinct points D and F . If E is the intersection of
lines DF and BC, prove that ∠BAD = ∠EAC.
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§1 Solutions to Day 1
§1.1 USAMO 2023/1, proposed by Holden Mui
Available online at https://aops.com/community/p27349297.

Problem statement

In an acute triangle ABC, let M be the midpoint of BC. Let P be the foot of
the perpendicular from C to AM . Suppose that the circumcircle of triangle ABP
intersects line BC at two distinct points B and Q. Let N be the midpoint of AQ.
Prove that NB = NC.

We show several different approaches. In all solutions, let D denote the foot of the
altitude from A.

A

B CD
M

P

Q

N

R

¶ Most common synthetic approach The solution hinges on the following claim:

Claim — Q coincides with the reflection of D across M .

Proof. Note that ]ADC = ]APC = 90◦, so ADPC is cyclic. Then by power of a point
(with the lengths directed),

MB ·MQ = MA ·MP = MC ·MD.

Since MB = MC, the claim follows.

It follows that MN ‖ AD, as M and N are respectively the midpoints of AQ and DQ.
Thus MN ⊥ BC, and so N lies on the perpendicular bisector of BC, as needed.
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Remark (David Lin). One can prove the main claim without power of a point as well, as
follows: Let R be the foot from B to AM , so BRCP is a parallelogram. Note that ABDR
is cyclic, and hence

]DRM = ]DBA = QBA = ]QPA = ]QPM.

Thus, DR ‖ PQ, so DRQ is also a parallelogram.

¶ Synthetic approach with no additional points at all

Claim — 4BPC ∼ 4ANM (oppositely oriented).

Proof. We have 4BMP ∼ 4AMQ from the given concyclicity of ABPQ. Then

BM

BP
=

AM

AQ
=⇒ 2BM

BP
=

AM

AQ/2
=⇒ BC

BP
=

AM

AN

implying the similarity (since ]MAQ = ]BPM).

This similarity gives us the equality of directed angles

] (BC,MN) = −] (PC,AM) = 90◦

as desired.

¶ Synthetic approach using only the point R Again let R be the foot from B to AM ,
so BRCP is a parallelogram.

Claim — ARQC is cyclic; equivalently, 4MAQ ∼ 4MCR.

Proof. MR ·MA = MP ·MA = MB ·MQ = MC ·MQ.

Note that in 4MCR, the M -median is parallel to CP and hence perpendicular to
RM . The same should be true in 4MAQ by the similarity, so MN ⊥MQ as needed.

¶ Cartesian coordinates approach with power of a point Suppose we set B = (−1, 0),
M = (0, 0), C = (1, 0), and A = (a, b). One may compute:

←−→
AM : 0 = bx− ay ⇐⇒ y =

b

a
x

←→
CP : 0 = a(x− 1) + by ⇐⇒ y = −a

b
(x− 1) = −a

b
x+

a

b
.

P =

(
a2

a2 + b2
,

ab

a2 + b2

)

Now note that
AM =

√
a2 + b2, PM =

a√
a2 + b2

together with power of a point

AM · PM = BM ·QM

to immediately deduce that Q = (a, 0). Hence N = (0, b/2) and we’re done.
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¶ Cartesian coordinates approach without power of a point (outline) After computing
A and P as above, one could also directly calculate

Perpendicular bisector of AB : y = −a+ 1

b
x+

a2 + b2 − 1

2b

Perpendicular bisector of PB : y = −
(
2a

b
+

b

a

)
x− b

2a

Perpendicular bisector of PA : y = −a

b
x+

a+ a2 + b2

2b
.

Circumcenter of 4PAB =

(
−a+ 1

2
,
2a2 + 2a+ b2

2b

)
.

This is enough to extract the coordinates of Q = (•, 0), because B = (−1, 0) is given,
and the x-coordinate of the circumcenter should be the average of the x-coordinates of
B and Q. In other words, Q = (−a, 0). Hence, N =

(
0, b

2

)
, as needed.

¶ Ill-advised barycentric approach (outline) Use reference triangle ABC. The A-
median is parametrized by (t : 1 : 1) for t ∈ R. So because of CP ⊥ AM , we are looking
for t such that (

t ~A+ ~B + ~C

t+ 2
− ~C

)
⊥

(
A−

~B + ~C

2

)
.

This is equivalent to (
t ~A+ ~B − (t+ 1)~C

)
⊥
(
2 ~A− ~B − ~C

)
.

By the perpendicularity formula for barycentric coordinates (EGMO 7.16), this is equiva-
lent to

0 = a2t− b2 · (3t+ 2) + c2 · (2− t)

=
(
a2 − 3b2 − c2

)
t− 2(b2 − c2)

=⇒ t =
2(b2 − c2)

a2 − 3b2 − c2
.

In other words,
P =

(
2(b2 − c2) : a2 − 3b2 − c2 : a2 − 3b2 − c2

)
.

A long calculation gives a2yP zP + b2zPxP + c2xP yP = (a2 − 3b2 − c2)(a2 − b2 + c2)(a2 −
2b2 − 2c2). Together with xP + yP + zP = 2a2 − 4b2 − 4c2, this makes the equation of
(ABP ) as

0 = −a2yz − b2zx− c2xy +
a2 − b2 + c2

2
z(x+ y + z).

To solve for Q, set x = 0 to get to get

a2yz =
a2 − b2 + c2

2
z(y + z) =⇒ y

z
=

a2 − b2 + c2

a2 + b2 − c2
.

In other words,
Q =

(
0 : a2 − b2 + c2 : a2 + b2 − c2

)
.

Taking the average with A = (1, 0, 0) then gives

N =
(
2a2 : a2 − b2 + c2 : a2 + b2 − c2

)
.

The equation for the perpendicular bisector of BC is given by (see EGMO 7.19)

0 = a2(z − y) + x(c2 − b2)

which contains N , as needed.
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¶ Extremely ill-advised complex numbers approaches (outline) Suppose we pick a, b,
c as the unit circle, and let m = (b+ c)/2. Using the fully general “foot” formula, one
can get

p =
(a−m)c+ (a−m)c+ am− am

2(a−m)
=

a2b− a2c− ab2 − 2abc− ac2 + b2c+ 3bc2

4bc− 2a(b+ c)

Meanwhile, an extremely ugly calculation will eventually yield

q =
bc
a + b+ c− a

2

so

n =
a+ q

2
=

a+ b+ c+ bc
a

4
=

(a+ b)(a+ c)

2a
.

There are a few ways to then verify NB = NC. The simplest seems to be to verify that

n− b+c
2

b− c
=

a− b− c+ bc
a

4(b− c)
=

(a− b)(a− c)

2a(b− c)

is pure imaginary, which is clear.
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§1.2 USAMO 2023/2, proposed by Carl Schildkraut
Available online at https://aops.com/community/p27349314.

Problem statement

Solve over the positive real numbers the functional equation

f(xy + f(x)) = xf(y) + 2.

The answer is f(x) ≡ x+ 1, which is easily verified to be the only linear solution.
We show conversely that f is linear. Let P (x, y) be the assertion.

Claim — f is weakly increasing.

Proof. Assume for contradiction a > b but f(a) < f(b). Choose y such that ay + f(a) =

by + f(b), that is y = f(b)−f(a)
a−b . Then P (a, y) and P (b, y) gives af(y) + 2 = bf(y) + 2,

which is impossible.

Claim (Up to an error of 2, f is linear) — We have

|f(x)− (Kx+ C)| ≤ 2

where K := 2
f(1) and C := f(f(1))− 2 are constants.

Proof. Note P (1, y) gives f(y + f(1)) = f(y) + 2 . Hence, f(nf(1)) = 2(n−1)+f(f(1))

for n ≥ 1. Combined with weakly increasing, this gives

2

⌊
x

f(1)

⌋
+ C ≤ f(x) ≤ 2

⌈
x

f(1)

⌉
+ C

which implies the result.

Rewrite the previous claim to the simpler f(x) = Kx+O(1). Then for any x and y,
the above claim gives

K (xy +Kx+O(1)) +O(1) = xf(y) + 2

which means that
x ·
(
Ky +K2 − f(y)

)
= O(1).

If we fix y and consider large x, we see this can only happen if Ky +K2 − f(y) = 0, i.e.
f is linear.
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§1.3 USAMO 2023/3, proposed by Holden Mui
Available online at https://aops.com/community/p27349464.

Problem statement

Consider an n-by-n board of unit squares for some odd positive integer n. We say
that a collection C of identical dominoes is a maximal grid-aligned configuration on
the board if C consists of (n2−1)/2 dominoes where each domino covers exactly two
neighboring squares and the dominoes don’t overlap: C then covers all but one square
on the board. We are allowed to slide (but not rotate) a domino on the board to cover
the uncovered square, resulting in a new maximal grid-aligned configuration with
another square uncovered. Let k(C) be the number of distinct maximal grid-aligned
configurations obtainable from C by repeatedly sliding dominoes.

Find all possible values of k(C) as a function of n.

The answer is that

k(C) ∈

{
1, 2, . . . ,

(
n− 1

2

)2
}
∪

{(
n+ 1

2

)2
}
.

Index the squares by coordinates (x, y) ∈ {1, 2, . . . , n}2. We say a square is special if
it is empty or it has the same parity in both coordinates as the empty square.

We now proceed in two cases:

¶ The special squares have both odd coordinates We construct a directed graph
G = G(C) whose vertices are special squares as follows: for each domino on a special
square s, we draw a directed edge from s to the special square that domino points to.
Thus all special squares have an outgoing edge except the empty cell.

Claim — Any undirected connected component of G is acyclic unless the cycle
contains the empty square inside it.

Proof. Consider a cycle of G; we are going to prove that the number of chessboard cells
enclosed is always odd.

8
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This can be proven directly by induction, but for theatrical effect, we use Pick’s
theorem. Mark the center of every chessboard cell on or inside the cycle to get a lattice.
The dominoes of the cycle then enclose a polyominoe which actually consists of 2 × 2
squares, meaning its area is a multiple of 4.

Hence B/2+ I − 1 is a multiple of 4, in the notation of Pick’s theorem. As B is twice the
number of dominoes, and a parity argument on the special squares shows that number is
even, it follows that B is also a multiple of 4 (these correspond to blue and black in the
figure above). This means I is odd (the red dots in the figure above), as desired.

Let T be the connected component containing the empty cell. By the claim, T is
acyclic, so it’s a tree. Now, notice that all the arrows point along T towards the empty
cell, and moving a domino corresponds to flipping an arrow. Therefore:

Claim — k(C) is exactly the number of vertices of T .

Proof. Starting with the underlying tree, the set of possible graphs is described by picking
one vertex to be the sink (the empty cell) and then directing all arrows towards it.

This implies that k(C) ≤
(
n+1
2

)2 in this case. Equality is achieved if T is a spanning
tree of G. One example of a way to achieve this is using the snake configuration below.

Remark. In Russia 1997/11.8 it’s shown that as long as the missing square is a corner, we
have G = T . The proof is given implicitly from our work here: when the empty cell is in a
corner, it cannot be surrounded, ergo the resulting graph has no cycles at all. And since the
overall graph has one fewer edge than vertex, it’s a tree.

Conversely, suppose T was not a spanning tree, i.e. T 6= G. Since in this odd-odd case,
G has one fewer edge than vertex, if G is not a tree, then it must contain at least one
cycle. That cycle encloses every special square of T . In particular, this means that T
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can’t contain any special squares from the outermost row or column of the n× n grid. In
this situation, we therefore have k(C) ≤

(
n−3
2

)2.
¶ The special squares have both even coordinates We construct the analogous graph
G on the same special squares. However, in this case, some of the points may not have
outgoing edges, because their domino may “point” outside the grid.

As before, the connected component T containing the empty square is a tree, and
k(C) is exactly the number of vertices of T . Thus to finish the problem we need to give,
for each k ∈ {1, 2, . . . ,

(
n−1
2

)2}, an example of a configuration where G has exactly k
vertices.

The construction starts with a “snake” picture for k =
(
n−1
2

)2, then decreases k by one
by perturbing a suitable set of dominoes. Rather than write out the procedure in words,
we show the sequence of nine pictures for n = 7 (where k = 9, 8, . . . , 1); the generalization
to larger n is straightforward.
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§2 Solutions to Day 2
§2.1 USAMO 2023/4, proposed by Carl Schildkraut
Available online at https://aops.com/community/p27349336.

Problem statement

Positive integers a and N are fixed, and N positive integers are written on a
blackboard. Alice and Bob play the following game. On Alice’s turn, she must
replace some integer n on the board with n+ a, and on Bob’s turn he must replace
some even integer n on the board with n/2. Alice goes first and they alternate turns.
If on his turn Bob has no valid moves, the game ends.

After analyzing the N integers on the board, Bob realizes that, regardless of what
moves Alice makes, he will be able to force the game to end eventually. Show that,
in fact, for this value of a and these N integers on the board, the game is guaranteed
to end regardless of Alice’s or Bob’s moves.

For N = 1, there is nothing to prove. We address N ≥ 2 only henceforth. Let S denote
the numbers on the board.

Claim — When N ≥ 2, if ν2(x) < ν2(a) for all x ∈ S, the game must terminate no
matter what either player does.

Proof. The ν2 of a number is unchanged by Alice’s move and decreases by one on Bob’s
move. The game ends when every ν2 is zero.

Hence, in fact the game will always terminate in exactly
∑

x∈S ν2(x) moves in this
case, regardless of what either player does.

Claim — When N ≥ 2, if there exists a number x on the board such that ν2(x) ≥
ν2(a), then Alice can cause the game to go on forever.

Proof. Denote by x the first entry of the board (its value changes over time). Then
Alice’s strategy is to:

• Operate on the first entry if ν2(x) = ν2(a) (the new entry thus has ν2(x+a) > ν2(a));

• Operate on any other entry besides the first one, otherwise.

A double induction then shows that

• Just before each of Bob’s turns, ν2(x) > ν2(a) always holds; and

• After each of Bob’s turns, ν2(x) ≥ ν2(a) always holds.

In particular Bob will never run out of legal moves, since halving x is always legal.
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§2.2 USAMO 2023/5, proposed by Ankan Bhattacharya
Available online at https://aops.com/community/p27349487.

Problem statement

Let n ≥ 3 be an integer. We say that an arrangement of the numbers 1, 2, . . . , n2

in an n× n table is row-valid if the numbers in each row can be permuted to form
an arithmetic progression, and column-valid if the numbers in each column can be
permuted to form an arithmetic progression.

For what values of n is it possible to transform any row-valid arrangement into a
column-valid arrangement by permuting the numbers in each row?

Answer: n prime only.

¶ Proof for n prime Suppose n = p. In an arithmetic progression with p terms, it’s easy
to see that either every term has a different residue modulo p (if the common difference
is not a multiple of p), or all of the residues coincide (when the common difference is a
multiple of p).

So, look at the multiples of p in a row-valid table; there is either 1 or p per row. As
there are p such numbers total, there are two cases:

• If all the multiples of p are in the same row, then the common difference in each
row is a multiple of p. In fact, it must be exactly p for size reasons. In other words,
up to permutation the rows are just the k (mod p) numbers in some order, and this
is obviously column-valid because we can now permute such that the kth column
contains exactly {(k − 1)p+ 1, (k − 1)p+ 2, . . . , kp}.

• If all the multiples of p are in different rows, then it follows each row contains every
residue modulo p exactly once. So we can permute to a column-valid arrangement
by ensuring the kth column contains all the k (mod p) numbers.

¶ Counterexample for n composite (due to Anton Trygub) Let p be any prime divisor
of n. Construct the table as follows:

• Row 1 contains 1 through n.

• Rows 2 through p+ 1 contain the numbers from p+ 1 to np+ p partitioned into
arithmetic progressions with common difference p.

• The rest of the rows contain the remaining numbers in reading order.
For example, when p = 2 and n = 10, we get the following table:

1 2 3 4 5 6 7 8 9 10
11 13 15 17 19 21 23 25 27 29
12 14 16 18 20 22 24 26 28 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100


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We claim this works fine. Assume for contradiction the rows may be permuted to obtain
a column-valid arrangement. Then the n columns should be arithmetic progressions
whose smallest element is in [1, n] and whose largest element is in [n2 − n+ 1, n2]. These
two elements must be congruent modulo n− 1, so in particular the column containing 2
must end with n2 − n+ 2.

Hence in that column, the common difference must in fact be exactly n. And yet n+2
and 2n+ 2 are in the same row, contradiction.
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§2.3 USAMO 2023/6, proposed by Zack Chroman
Available online at https://aops.com/community/p27349354.

Problem statement

Let ABC be a triangle with incenter I and excenters Ia, Ib, Ic opposite A, B, and
C, respectively. Given an arbitrary point D on the circumcircle of 4ABC that does
not lie on any of the lines IIa, IbIc, or BC, suppose the circumcircles of 4DIIa and
4DIbIc intersect at two distinct points D and F . If E is the intersection of lines
DF and BC, prove that ∠BAD = ∠EAC.

Here are a two approaches.

A

B C

D

E

I

M

Ia

Ib

Ic

F

¶ Barycentric coordinates (Carl Schildkraut) With reference triangle 4ABC, set
D = (r : s : t).

Claim — The equations of (DIIa) and (DIbIc) are, respectively,

0 = −a2yz − b2zx− c2xy + (x+ y + z) ·
(
bcx− bcr

cs− bt
(cy − bz)

)
0 = −a2yz − b2zx− c2xy + (x+ y + z) ·

(
−bcx+

bcr

cs+ bt
(cy + bz)

)
.

Proof. Since D ∈ (ABC), we have a2st + b2tr + c2rs = 0. Now each equation can be
verified by direct substitution of three points.

By EGMO Lemma 7.24, the radical axis is then given by

DF : bcx− bcr

cs− bt
(cy − bz) = −bcx+

bcr

cs+ bt
(cy + bz).
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Now the point (
0 :

b2

s
:
c2

t

)
=
(
0 : b2t : c2s

)
lies on line DF by inspection, and is obviously on line BC, hence it coincides with E.
This lies on the isogonal of AD (by EGMO Lemma 7.6), as needed.

¶ Synthetic approach (Anant Mudgal) Focus on just (DIIa). Let P be the second
intersection of (DIIa) with (ABC), and let M be the midpoint of minor arc B̃C. Then
by radical axis, lines AM , DP , and BC are concurrent at a point K.

Let E′ = PM ∩BC.

A

B C

D

E′

I

M

Ia

K

P

X

Claim — We have ]BAD = ]E′AC.

Proof. By shooting lemma, AKE′P is cyclic, so

]KAE′ = ]KPE′ = ]DPM = ]DAM.

Claim — The power of point E′ with respect to (DIIa) is 2E′B · E′C.

Proof. Construct parallelogram IE′IaX. Since MI2 = ME′ ·MP , we can get

]XIaI = ]IaIE
′ = ]MIE′ = ]MPI = ]XPI.

Hence X lies on (DIIa), and E′X · E′P = 2E′M · E′P = 2E′B · E′C.

Repeat the argument on (DIbIc); the same point E′ (because of the first claim) then
has power 2E′B ·E′C with respect to (DIbIc). Hence E′ lies on the radical axis of (DIIa)
and (DIbIc), ergo E′ = E. The first claim then solves the problem.

16

http://web.evanchen.cc

	Problems
	USAMO 2000/1
	USAMO 2000/2
	USAMO 2000/3
	USAMO 2000/4
	USAMO 2000/5
	USAMO 2000/6, proposed by Gheorghita Zbaganu
	Problems
	USAMO 2001/1
	USAMO 2001/2
	USAMO 2001/3
	USAMO 2001/4
	USAMO 2001/5
	USAMO 2001/6, proposed by Bjorn Poonen
	Problems
	USAMO 2002/1
	USAMO 2002/2
	USAMO 2002/3
	USAMO 2002/4
	USAMO 2002/5
	USAMO 2002/6
	Problems
	USAMO 2003/1, proposed by Titu Andreescu
	USAMO 2003/2
	USAMO 2003/3
	USAMO 2003/4, proposed by Titu Andreescu and Zuming Feng
	USAMO 2003/5, proposed by Zuming Feng and Titu Andreescu
	USAMO 2003/6
	Problems
	USAMO 2004/1, proposed by Titu Andreescu
	USAMO 2004/2, proposed by Kiran Kedlaya
	USAMO 2004/3, proposed by Ricky Liu
	USAMO 2004/4, proposed by Melanie Wood
	USAMO 2004/5, proposed by Titu Andreescu
	USAMO 2004/6, proposed by Zuming Feng
	Problems
	USAMO 2005/1, proposed by Zuming Feng
	USAMO 2005/2, proposed by Razvan Gelca
	USAMO 2005/3, proposed by Zuming Feng
	USAMO 2005/4, proposed by Elgin Johnston
	USAMO 2005/5, proposed by Kiran Kedlaya
	USAMO 2005/6, proposed by Titu Andreescu and Gabriel Dospinescu
	Problems
	USAMO 2006/1, proposed by Kiran Kedlaya
	USAMO 2006/2, proposed by Dick Gibbs
	USAMO 2006/3, proposed by Titu Andreescu and Gabriel Dospinescu
	USAMO 2006/4, proposed by Ricky Liu
	USAMO 2006/5, proposed by Zoran Sunik
	USAMO 2006/6, proposed by Zuming Feng and Zhonghao Ye
	Problems
	USAMO 2007/1, proposed by Sam Vandervelde
	USAMO 2007/2, proposed by Gregory Galperin
	USAMO 2007/3, proposed by Andras Gyarfas
	USAMO 2007/4, proposed by Reid Barton
	USAMO 2007/5, proposed by Titu Andreescu
	USAMO 2007/6, proposed by Sung-Yoon Kim
	Problems
	USAMO 2008/1, proposed by Titu Andreescu
	USAMO 2008/2, proposed by Zuming Feng
	USAMO 2008/3, proposed by Gabriel Carroll
	USAMO 2008/4, proposed by Gregory Galperin
	USAMO 2008/5, proposed by Kiran Kedlaya
	USAMO 2008/6, proposed by Sam Vandervelde
	Problems
	USAMO 2009/1, proposed by Ian Le
	USAMO 2009/2, proposed by Kiran Kedlaya and Tewordos Amdeberhan
	USAMO 2009/3, proposed by Sam Vandervelde
	USAMO 2009/4, proposed by Titu Andreescu
	USAMO 2009/5, proposed by Zuming Feng
	USAMO 2009/6, proposed by Gabriel Carroll
	Problems
	USAMO 2010/1, proposed by Zuming Feng
	USAMO 2010/2, proposed by David Speyer
	USAMO 2010/3, proposed by Gabriel Carroll
	USAMO 2010/4, proposed by Zuming Feng
	USAMO 2010/5, proposed by Titu Andreescu
	USAMO 2010/6, proposed by Zuming Feng and Paul Zeitz
	Problems
	USAMO 2011/1
	USAMO 2011/2, proposed by Sam Vandervelde
	USAMO 2011/3
	USAMO 2011/4, proposed by Zuming Feng
	USAMO 2011/5
	USAMO 2011/6
	Problems
	USAMO 2012/1, proposed by Titu Andreescu
	USAMO 2012/2, proposed by Gregory Galperin
	USAMO 2012/3, proposed by Gabriel Carroll
	USAMO 2012/4, proposed by Gabriel Dospinescu
	USAMO 2012/5, proposed by Titu Andreescu and Cosmin Pohoata
	USAMO 2012/6, proposed by Gabriel Carroll
	Problems
	USAMO 2013/1, proposed by Zuming Feng
	USAMO 2013/2, proposed by Kiran Kedlaya
	USAMO 2013/3, proposed by Warut Suksompong
	USAMO 2013/4, proposed by Titu Andreescu
	USAMO 2013/5, proposed by Richard Stong
	USAMO 2013/6, proposed by Titu Andreescu and Cosmin Pohoata
	Problems
	USAMO 2014/1, proposed by Titu Andreescu
	USAMO 2014/2, proposed by Titu Andreescu
	USAMO 2014/3, proposed by Razvan Gelca
	USAMO 2014/4, proposed by Palmer Mebane
	USAMO 2014/5, proposed by Titu Andreescu and Cosmin Pohoata
	USAMO 2014/6, proposed by Gabriel Dospinescu
	Problems
	USAMO 2015/1, proposed by Titu Andreescu
	USAMO 2015/2, proposed by Zuming Feng
	USAMO 2015/3
	USAMO 2015/4
	USAMO 2015/5, proposed by Mohsen Jamali
	USAMO 2015/6
	Problems
	USAMO 2016/1, proposed by Iurie Boreico
	USAMO 2016/2, proposed by Kiran Kedlaya
	USAMO 2016/3, proposed by Evan Chen and Telv Cohl
	USAMO 2016/4, proposed by Titu Andreescu
	USAMO 2016/5, proposed by Ivan Borsenco
	USAMO 2016/6, proposed by Gabriel Carroll
	Problems
	USAMO 2017/1, proposed by Gregory Galperin
	USAMO 2017/2, proposed by Maria Monks
	USAMO 2017/3, proposed by Evan Chen
	USAMO 2017/4, proposed by Maria Monks
	USAMO 2017/5, proposed by Ricky Liu
	USAMO 2017/6, proposed by Titu Andreescu
	2018-USAMO-Day1-Problems
	2018-USAMO-Day2-Problems
	Problems
	USAMO 2018/1, proposed by Titu Andreescu
	USAMO 2018/2, proposed by Titu Andreescu and Nikolai Nikolov
	USAMO 2018/3, proposed by Ivan Borsenco
	USAMO 2018/4, proposed by Ankan Bhattacharya
	USAMO 2018/5, proposed by Kada Williams
	USAMO 2018/6, proposed by Richard Stong
	Problems
	USAMO 2019/1, proposed by Evan Chen
	USAMO 2019/2, proposed by Ankan Bhattacharya
	USAMO 2019/3, proposed by Titu Andreescu, Vlad Matei, and Cosmin Pohoata
	USAMO 2019/4, proposed by Ricky Liu
	USAMO 2019/5, proposed by Yannick Yao
	USAMO 2019/6, proposed by Titu Andreescu and Gabriel Dospinescu
	Problems
	USAMO 2020/1, proposed by Zuming Feng
	USAMO 2020/2, proposed by Alex Zhai
	USAMO 2020/3, proposed by Richard Stong and Toni Bluher
	USAMO 2020/4, proposed by Ankan Bhattacharya
	USAMO 2020/5, proposed by Carl Schildkraut
	USAMO 2020/6, proposed by David Speyer and Kiran Kedlaya
	Problems
	USAMO 2021/1, proposed by Ankan Bhattacharya
	USAMO 2021/2, proposed by Zoran Sunic
	USAMO 2021/3, proposed by Alex Zhai, Shaunak Kishore
	USAMO 2021/4, proposed by Carl Schildkraut
	USAMO 2021/5, proposed by Mohsen Jamaali
	USAMO 2021/6, proposed by Ankan Bhattacharya
	Problems
	USAMO 2022/1, proposed by Ankan Bhattacharya
	USAMO 2022/2, proposed by Ankan Bhattacharya
	USAMO 2022/3, proposed by Hung-Hsun Hans Yu
	USAMO 2022/4, proposed by Holden Mui
	USAMO 2022/5, proposed by Gabriel Carroll
	USAMO 2022/6, proposed by Yannick Yao
	Problems
	Solutions to Day 1
	USAMO 2023/1, proposed by Holden Mui
	USAMO 2023/2, proposed by Carl Schildkraut
	USAMO 2023/3, proposed by Holden Mui

	Solutions to Day 2
	USAMO 2023/4, proposed by Carl Schildkraut
	USAMO 2023/5, proposed by Ankan Bhattacharya
	USAMO 2023/6, proposed by Zack Chroman


